Combining Texts

All the ideas for 'On What Grounds What', 'Julius Caesar' and 'Which Logic is the Right Logic?'

unexpand these ideas     |    start again     |     specify just one area for these texts


30 ideas

1. Philosophy / E. Nature of Metaphysics / 1. Nature of Metaphysics
Modern Quinean metaphysics is about what exists, but Aristotelian metaphysics asks about grounding [Schaffer,J]
     Full Idea: On the now dominant Quinean view, metaphysics is about what there is (such as properties, meanings and numbers). I will argue for the revival of a more traditional Aristotelian view, on which metaphysics is about what grounds what.
     From: Jonathan Schaffer (On What Grounds What [2009], Intro)
     A reaction: I find that an enormously helpful distinction, and support the Aristotelian view. Schaffer's general line is that what exists is fairly uncontroversial and dull, but the interesting truths about the world emerge when we grasp its structure.
1. Philosophy / E. Nature of Metaphysics / 3. Metaphysical Systems
If you tore the metaphysics out of philosophy, the whole enterprise would collapse [Schaffer,J]
     Full Idea: Traditional metaphysics is so tightly woven into the fabric of philosophy that it cannot be torn out without the whole tapestry unravelling.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.3)
     A reaction: I often wonder why the opponents of metaphysics still continue to do philosophy. I don't see how you address questions of ethics, or philosophy of mathematics (etc) without coming up against highly general and abstract over-questions.
2. Reason / A. Nature of Reason / 1. On Reason
Good reasons must give way to better [Shakespeare]
     Full Idea: Good reasons must of force give way to better.
     From: William Shakespeare (Julius Caesar [1599], 4.3.205)
     A reaction: [Brutus to Cassius] This remark is an axiom of rationality. But, of course, reasons can come in groups, and three modest reasons may compete with one very good reason.
2. Reason / B. Laws of Thought / 6. Ockham's Razor
We should not multiply basic entities, but we can have as many derivative entities as we like [Schaffer,J]
     Full Idea: Occam's Razor should only be understood to concern substances: do not multiply basic entities without necessity. There is no problem with the multiplication of derivative entities - they are an 'ontological free lunch'.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.1)
     A reaction: The phrase 'ontological free lunch' comes from Armstrong. This is probably what Occam meant. A few extra specks of dust, or even a few more numbers (thank you, Cantor!) don't seem to challenge the principle.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The axiom of choice now seems acceptable and obvious (if it is meaningful) [Tharp]
     Full Idea: The main objection to the axiom of choice was that it had to be given by some law or definition, but since sets are arbitrary this seems irrelevant. Formalists consider it meaningless, but set-theorists consider it as true, and practically obvious.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §3)
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Logic is either for demonstration, or for characterizing structures [Tharp]
     Full Idea: One can distinguish at least two quite different senses of logic: as an instrument of demonstration, and perhaps as an instrument for the characterization of structures.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
     A reaction: This is trying to capture the proof-theory and semantic aspects, but merely 'characterizing' something sounds like a rather feeble aspiration for the semantic side of things. Isn't it to do with truth, rather than just rule-following?
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
Elementary logic is complete, but cannot capture mathematics [Tharp]
     Full Idea: Elementary logic cannot characterize the usual mathematical structures, but seems to be distinguished by its completeness.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic isn't provable, but will express set-theory and classic problems [Tharp]
     Full Idea: The expressive power of second-order logic is too great to admit a proof procedure, but is adequate to express set-theoretical statements, and open questions such as the continuum hypothesis or the existence of big cardinals are easily stated.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / b. Basic connectives
In sentential logic there is a simple proof that all truth functions can be reduced to 'not' and 'and' [Tharp]
     Full Idea: In sentential logic there is a simple proof that all truth functions, of any number of arguments, are definable from (say) 'not' and 'and'.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §0)
     A reaction: The point of 'say' is that it can be got down to two connectives, and these are just the usual preferred pair.
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
The main quantifiers extend 'and' and 'or' to infinite domains [Tharp]
     Full Idea: The symbols ∀ and ∃ may, to start with, be regarded as extrapolations of the truth functional connectives ∧ ('and') and ∨ ('or') to infinite domains.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §5)
5. Theory of Logic / G. Quantification / 7. Unorthodox Quantification
There are at least five unorthodox quantifiers that could be used [Tharp]
     Full Idea: One might add to one's logic an 'uncountable quantifier', or a 'Chang quantifier', or a 'two-argument quantifier', or 'Shelah's quantifier', or 'branching quantifiers'.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §3)
     A reaction: [compressed - just listed for reference, if you collect quantifiers, like collecting butterflies]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Skolem mistakenly inferred that Cantor's conceptions were illusory [Tharp]
     Full Idea: Skolem deduced from the Löwenheim-Skolem theorem that 'the absolutist conceptions of Cantor's theory' are 'illusory'. I think it is clear that this conclusion would not follow even if elementary logic were in some sense the true logic, as Skolem assumed.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §7)
     A reaction: [Tharp cites Skolem 1962 p.47] Kit Fine refers to accepters of this scepticism about the arithmetic of infinities as 'Skolemites'.
The Löwenheim-Skolem property is a limitation (e.g. can't say there are uncountably many reals) [Tharp]
     Full Idea: The Löwenheim-Skolem property seems to be undesirable, in that it states a limitation concerning the distinctions the logic is capable of making, such as saying there are uncountably many reals ('Skolem's Paradox').
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
5. Theory of Logic / K. Features of Logics / 3. Soundness
Soundness would seem to be an essential requirement of a proof procedure [Tharp]
     Full Idea: Soundness would seem to be an essential requirement of a proof procedure, since there is little point in proving formulas which may turn out to be false under some interpretation.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
5. Theory of Logic / K. Features of Logics / 4. Completeness
Completeness and compactness together give axiomatizability [Tharp]
     Full Idea: Putting completeness and compactness together, one has axiomatizability.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §1)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
If completeness fails there is no algorithm to list the valid formulas [Tharp]
     Full Idea: In general, if completeness fails there is no algorithm to list the valid formulas.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
     A reaction: I.e. the theory is not effectively enumerable.
5. Theory of Logic / K. Features of Logics / 6. Compactness
Compactness is important for major theories which have infinitely many axioms [Tharp]
     Full Idea: It is strange that compactness is often ignored in discussions of philosophy of logic, since the most important theories have infinitely many axioms.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
     A reaction: An example of infinite axioms is the induction schema in first-order Peano Arithmetic.
Compactness blocks infinite expansion, and admits non-standard models [Tharp]
     Full Idea: The compactness condition seems to state some weakness of the logic (as if it were futile to add infinitely many hypotheses). To look at it another way, formalizations of (say) arithmetic will admit of non-standard models.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
5. Theory of Logic / K. Features of Logics / 8. Enumerability
A complete logic has an effective enumeration of the valid formulas [Tharp]
     Full Idea: A complete logic has an effective enumeration of the valid formulas.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
Effective enumeration might be proved but not specified, so it won't guarantee knowledge [Tharp]
     Full Idea: Despite completeness, the mere existence of an effective enumeration of the valid formulas will not, by itself, provide knowledge. For example, one might be able to prove that there is an effective enumeration, without being able to specify one.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
     A reaction: The point is that completeness is supposed to ensure knowledge (of what is valid but unprovable), and completeness entails effective enumerability, but more than the latter is needed to do the key job.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
If 'there are red roses' implies 'there are roses', then 'there are prime numbers' implies 'there are numbers' [Schaffer,J]
     Full Idea: We can automatically infer 'there are roses' from 'there are red roses' (with no shift in the meaning of 'roses'). Likewise one can automatically infer 'there are numbers' from 'there are prime numbers'.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.1)
     A reaction: He similarly observes that the atheist's 'God is a fictional character' implies 'there are fictional characters'. Schaffer is not committing to a strong platonism with his claim - merely that the existence of numbers is hardly worth disputing.
7. Existence / C. Structure of Existence / 1. Grounding / a. Nature of grounding
Grounding is unanalysable and primitive, and is the basic structuring concept in metaphysics [Schaffer,J]
     Full Idea: Grounding should be taken as primitive, as per the neo-Aristotelian approach. Grounding is an unanalyzable but needed notion - it is the primitive structuring conception of metaphysics.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.2)
     A reaction: [he cites K.Fine 1991] I find that this simple claim clarifies the discussions of Kit Fine, where you are not always quite sure what the game is. I agree fully with it. It makes metaphysics interesting, where cataloguing entities is boring.
7. Existence / C. Structure of Existence / 5. Supervenience / a. Nature of supervenience
Supervenience is just modal correlation [Schaffer,J]
     Full Idea: Supervenience is mere modal correlation.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.2)
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
The cosmos is the only fundamental entity, from which all else exists by abstraction [Schaffer,J]
     Full Idea: My preferred view is that there is only one fundamental entity - the whole concrete cosmos - from which all else exists by abstraction.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.1)
     A reaction: This looks to me like weak anti-realism - that there are no natural 'joints' in nature - but I don't think Schaffer intends that. I take the joints to be fundamentals, which necessitates that the cosmos has parts. His 'abstraction' is clearly a process.
7. Existence / E. Categories / 4. Category Realism
Maybe categories are just the different ways that things depend on basic substances [Schaffer,J]
     Full Idea: Maybe the categories are determined by the different grounding relations, ..so that categories just are the ways things depend on substances. ...Categories are places in the dependence ordering.
     From: Jonathan Schaffer (On What Grounds What [2009], 1.3)
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
There exist heaps with no integral unity, so we should accept arbitrary composites in the same way [Schaffer,J]
     Full Idea: I am happy to accept universal composition, on the grounds that there are heaps, piles etc with no integral unity, and that arbitrary composites are no less unified than heaps.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.1 n11)
     A reaction: The metaphysical focus is then placed on what constitutes 'integral unity', which is precisely the question which most interested Aristotle. Clearly if there is nothing more to an entity than its components, scattering them isn't destruction.
The notion of 'grounding' can explain integrated wholes in a way that mere aggregates can't [Schaffer,J]
     Full Idea: The notion of grounding my capture a crucial mereological distinction (missing from classical mereology) between an integrated whole with genuine unity, and a mere aggregate. x is an integrated whole if it grounds its proper parts.
     From: Jonathan Schaffer (On What Grounds What [2009], 3.1)
     A reaction: That gives a nice theoretical notion, but if you remove each of the proper parts, does x remain? Is it a bare particular? I take it that it will have to be an abstract principle, the one Aristotle was aiming at with his notion of 'form'. Schaffer agrees.
10. Modality / E. Possible worlds / 1. Possible Worlds / b. Impossible worlds
Belief in impossible worlds may require dialetheism [Schaffer,J]
     Full Idea: One motivation for dialetheism is the view that there are impossible worlds.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.3)
11. Knowledge Aims / B. Certain Knowledge / 2. Common Sense Certainty
'Moorean certainties' are more credible than any sceptical argument [Schaffer,J]
     Full Idea: A 'Moorean certainty' is when something is more credible than any philosopher's argument to the contrary.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.1)
     A reaction: The reference is to G.E. Moore's famous claim that the existence of his hand is more certain than standard sceptical arguments. It sounds empiricist, but they might be parallel rational truths, of basic logic or arithmetic.
20. Action / B. Preliminaries of Action / 2. Willed Action / b. Volitionism
The cause of my action is in my will [Shakespeare]
     Full Idea: The cause is in my will. I will not come./That is enough to satisfy the senate./But for your private satisfaction,/Because I love you, I will let you know.
     From: William Shakespeare (Julius Caesar [1599], II.ii)
     A reaction: This asserts the purest form of volitionism, but then qualifies it, because Caesar's will has been influenced by his wife's dreams.