Combining Texts

All the ideas for 'Set Theory', 'A Priori' and 'The iterative conception of Set'

unexpand these ideas     |    start again     |     specify just one area for these texts


25 ideas

1. Philosophy / E. Nature of Metaphysics / 7. Against Metaphysics
After 1903, Husserl avoids metaphysical commitments [Mares]
     Full Idea: In Husserl's philosophy after 1903, he is unwilling to commit himself to any specific metaphysical views.
     From: Edwin D. Mares (A Priori [2011], 08.2)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y) [Kunen]
     Full Idea: Axiom of Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y). That is, a set is determined by its members. If every z in one set is also in the other set, then the two sets are the same.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z) [Kunen]
     Full Idea: Axiom of Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z). Any pair of entities must form a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
     A reaction: Repeated applications of this can build the hierarchy of sets.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A) [Kunen]
     Full Idea: Axiom of Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A). That is, the union of a set (all the members of the members of the set) must also be a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x) [Kunen]
     Full Idea: Axiom of Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x). That is, there is a set which contains zero and all of its successors, hence all the natural numbers. The principal of induction rests on this axiom.
     From: Kenneth Kunen (Set Theory [1980], §1.7)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Power Set: ∀x ∃y ∀z(z ⊂ x → z ∈ y) [Kunen]
     Full Idea: Power Set Axiom: ∀x ∃y ∀z(z ⊂ x → z ∈ y). That is, there is a set y which contains all of the subsets of a given set. Hence we define P(x) = {z : z ⊂ x}.
     From: Kenneth Kunen (Set Theory [1980], §1.10)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Do the Replacement Axioms exceed the iterative conception of sets? [Boolos, by Maddy]
     Full Idea: For Boolos, the Replacement Axioms go beyond the iterative conception.
     From: report of George Boolos (The iterative conception of Set [1971]) by Penelope Maddy - Naturalism in Mathematics I.3
Replacement: ∀x∈A ∃!y φ(x,y) → ∃Y ∀X∈A ∃y∈Y φ(x,y) [Kunen]
     Full Idea: Axiom of Replacement Scheme: ∀x ∈ A ∃!y φ(x,y) → ∃Y ∀X ∈ A ∃y ∈ Y φ(x,y). That is, any function from a set A will produce another set Y.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation:∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y))) [Kunen]
     Full Idea: Axiom of Foundation: ∀x (∃y(y ∈ x) → ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))). Aka the 'Axiom of Regularity'. Combined with Choice, it means there are no downward infinite chains.
     From: Kenneth Kunen (Set Theory [1980], §3.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: ∀A ∃R (R well-orders A) [Kunen]
     Full Idea: Axiom of Choice: ∀A ∃R (R well-orders A). That is, for every set, there must exist another set which imposes a well-ordering on it. There are many equivalent versions. It is not needed in elementary parts of set theory.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Set Existence: ∃x (x = x) [Kunen]
     Full Idea: Axiom of Set Existence: ∃x (x = x). This says our universe is non-void. Under most developments of formal logic, this is derivable from the logical axioms and thus redundant, but we do so for emphasis.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ) [Kunen]
     Full Idea: Comprehension Scheme: for each formula φ without y free, the universal closure of this is an axiom: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ). That is, there must be a set y if it can be defined by the formula φ.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
     A reaction: Unrestricted comprehension leads to Russell's paradox, so restricting it in some way (e.g. by the Axiom of Specification) is essential.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Constructibility: V = L (all sets are constructible) [Kunen]
     Full Idea: Axiom of Constructability: this is the statement V = L (i.e. ∀x ∃α(x ∈ L(α)). That is, the universe of well-founded von Neumann sets is the same as the universe of sets which are actually constructible. A possible axiom.
     From: Kenneth Kunen (Set Theory [1980], §6.3)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
The truth of the axioms doesn't matter for pure mathematics, but it does for applied [Mares]
     Full Idea: The epistemological burden of showing that the axioms are true is removed if we are only studying pure mathematics. If, however, we want to look at applied mathematics, then this burden returns.
     From: Edwin D. Mares (A Priori [2011], 11.4)
     A reaction: One of those really simple ideas that hits the spot. Nice. The most advanced applied mathematics must rest on counting and measuring.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Mathematics is relations between properties we abstract from experience [Mares]
     Full Idea: Aristotelians treat mathematical facts as relations between properties. These properties, moreover, are abstracted from our experience of things. ...This view finds a natural companion in structuralism.
     From: Edwin D. Mares (A Priori [2011], 11.7)
     A reaction: This is the view of mathematics that I personally favour. The view that we abstract 'five' from a group of five pebbles is too simplistic, but this is the right general approach.
10. Modality / D. Knowledge of Modality / 2. A Priori Contingent
Light in straight lines is contingent a priori; stipulated as straight, because they happen to be so [Mares]
     Full Idea: It seems natural to claim that light rays moving in straight lines is contingent but a priori. Scientists stipulate that they are the standard by which we measure straightness, but their appropriateness for this task is a contingent feature of the world.
     From: Edwin D. Mares (A Priori [2011], 02.9)
     A reaction: This resembles the metre rule in Paris. It is contingent that something is a certain way, so we make being that way a conventional truth, which can therefore be known via the convention, rather than via the contingent fact.
12. Knowledge Sources / A. A Priori Knowledge / 6. A Priori from Reason
Aristotelians dislike the idea of a priori judgements from pure reason [Mares]
     Full Idea: Aristotelians tend to eschew talk about a special faculty of pure reason that is responsible for all of our a priori judgements.
     From: Edwin D. Mares (A Priori [2011], 08.9)
     A reaction: He is invoking Carrie Jenkins's idea that the a priori is knowledge of relations between concepts which have been derived from experience. Nice idea. We thus have an empirical a priori, integrated into the natural world. Abstraction must be involved.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Empiricists say rationalists mistake imaginative powers for modal insights [Mares]
     Full Idea: Empiricist critiques of rationalism often accuse rationalists of confusing the limits of their imaginations with real insight into what is necessarily true.
     From: Edwin D. Mares (A Priori [2011], 03.01)
     A reaction: See ideas on 'Conceivable as possible' for more on this. You shouldn't just claim to 'see' that something is true, but be willing to offer some sort of reason, truthmaker or grounding. Without that, you may be right, but you are on weak ground.
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / a. Coherence as justification
The most popular view is that coherent beliefs explain one another [Mares]
     Full Idea: In what is perhaps the most popular version of coherentism, a system of beliefs is a set of beliefs that explain one another.
     From: Edwin D. Mares (A Priori [2011], 01.5)
     A reaction: These seems too simple. My first response would be that explanations are what result from coherence sets of beliefs. I may have beliefs that explain nothing, but at least have the virtue of being coherent.
14. Science / B. Scientific Theories / 3. Instrumentalism
Operationalism defines concepts by our ways of measuring them [Mares]
     Full Idea: The central claim of Percy Bridgman's theory of operational definitions (1920s), is that definitions of certain scientific concepts are given by the ways that we have to measure them. For example, a straight line is 'the path of a light ray'.
     From: Edwin D. Mares (A Priori [2011], 02.9)
     A reaction: It is often observed that this captures the spirit of Special Relativity.
18. Thought / D. Concepts / 2. Origin of Concepts / b. Empirical concepts
Aristotelian justification uses concepts abstracted from experience [Mares]
     Full Idea: Aristotelian justification is the process of reasoning using concepts that are abstracted from experience (rather than, say, concepts that are innate or those that we associate with the meanings of words).
     From: Edwin D. Mares (A Priori [2011], 08.1)
     A reaction: See Carrie Jenkins for a full theory along these lines (though she doesn't mention Aristotle). This is definitely my preferred view of concepts.
18. Thought / D. Concepts / 4. Structure of Concepts / c. Classical concepts
The essence of a concept is either its definition or its conceptual relations? [Mares]
     Full Idea: In the 'classical theory' a concept includes in it those concepts that define it. ...In the 'theory theory' view the content of a concept is determined by its relationship to other concepts.
     From: Edwin D. Mares (A Priori [2011], 03.10)
     A reaction: Neither of these seem to give an intrinsic account of a concept, or any account of how the whole business gets off the ground.
19. Language / C. Assigning Meanings / 8. Possible Worlds Semantics
Possible worlds semantics has a nice compositional account of modal statements [Mares]
     Full Idea: Possible worlds semantics is appealing because it gives a compositional analysis of the truth conditions of statements about necessity and possibility.
     From: Edwin D. Mares (A Priori [2011], 02.2)
     A reaction: Not sure I get this. Is the meaning composed by the gradual addition of worlds? If not, how is meaning composed in the normal way, from component words and phrases?
19. Language / D. Propositions / 3. Concrete Propositions
Unstructured propositions are sets of possible worlds; structured ones have components [Mares]
     Full Idea: An unstructured proposition is a set of possible worlds. ....Structured propositions contain entities that correspond to various parts of the sentences or thoughts that express them.
     From: Edwin D. Mares (A Priori [2011], 02.3)
     A reaction: I am definitely in favour of structured propositions. It strikes me as so obvious as to be not worth discussion - so I am obviously missing something here. Mares says structured propositions are 'more convenient'.
27. Natural Reality / C. Space / 3. Points in Space
Maybe space has points, but processes always need regions with a size [Mares]
     Full Idea: One theory is that space is made up of dimensionless points, but physical processes cannot take place in regions of less than a certain size.
     From: Edwin D. Mares (A Priori [2011], 06.7)
     A reaction: Thinkers in sympathy with verificationism presumably won't like this, and may prefer Feynman's view.