Combining Texts

All the ideas for 'Set Theory', 'Sentences' and 'The Essence of Reference'

unexpand these ideas     |    start again     |     specify just one area for these texts


20 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y) [Kunen]
     Full Idea: Axiom of Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y). That is, a set is determined by its members. If every z in one set is also in the other set, then the two sets are the same.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z) [Kunen]
     Full Idea: Axiom of Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z). Any pair of entities must form a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
     A reaction: Repeated applications of this can build the hierarchy of sets.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A) [Kunen]
     Full Idea: Axiom of Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A). That is, the union of a set (all the members of the members of the set) must also be a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x) [Kunen]
     Full Idea: Axiom of Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x). That is, there is a set which contains zero and all of its successors, hence all the natural numbers. The principal of induction rests on this axiom.
     From: Kenneth Kunen (Set Theory [1980], §1.7)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Power Set: ∀x ∃y ∀z(z ⊂ x → z ∈ y) [Kunen]
     Full Idea: Power Set Axiom: ∀x ∃y ∀z(z ⊂ x → z ∈ y). That is, there is a set y which contains all of the subsets of a given set. Hence we define P(x) = {z : z ⊂ x}.
     From: Kenneth Kunen (Set Theory [1980], §1.10)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement: ∀x∈A ∃!y φ(x,y) → ∃Y ∀X∈A ∃y∈Y φ(x,y) [Kunen]
     Full Idea: Axiom of Replacement Scheme: ∀x ∈ A ∃!y φ(x,y) → ∃Y ∀X ∈ A ∃y ∈ Y φ(x,y). That is, any function from a set A will produce another set Y.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation:∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y))) [Kunen]
     Full Idea: Axiom of Foundation: ∀x (∃y(y ∈ x) → ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))). Aka the 'Axiom of Regularity'. Combined with Choice, it means there are no downward infinite chains.
     From: Kenneth Kunen (Set Theory [1980], §3.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: ∀A ∃R (R well-orders A) [Kunen]
     Full Idea: Axiom of Choice: ∀A ∃R (R well-orders A). That is, for every set, there must exist another set which imposes a well-ordering on it. There are many equivalent versions. It is not needed in elementary parts of set theory.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Set Existence: ∃x (x = x) [Kunen]
     Full Idea: Axiom of Set Existence: ∃x (x = x). This says our universe is non-void. Under most developments of formal logic, this is derivable from the logical axioms and thus redundant, but we do so for emphasis.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ) [Kunen]
     Full Idea: Comprehension Scheme: for each formula φ without y free, the universal closure of this is an axiom: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ). That is, there must be a set y if it can be defined by the formula φ.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
     A reaction: Unrestricted comprehension leads to Russell's paradox, so restricting it in some way (e.g. by the Axiom of Specification) is essential.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Constructibility: V = L (all sets are constructible) [Kunen]
     Full Idea: Axiom of Constructability: this is the statement V = L (i.e. ∀x ∃α(x ∈ L(α)). That is, the universe of well-founded von Neumann sets is the same as the universe of sets which are actually constructible. A possible axiom.
     From: Kenneth Kunen (Set Theory [1980], §6.3)
5. Theory of Logic / F. Referring in Logic / 1. Naming / e. Empty names
It is best to say that a name designates iff there is something for it to designate [Sainsbury]
     Full Idea: It is better to say that 'For all x ("Hesperus" stands for x iff x = Hesperus)', than to say '"Hesperus" stands for Hesperus', since then the expression can be a name with no bearer (e.g. "Vulcan").
     From: Mark Sainsbury (The Essence of Reference [2006], 18.2)
     A reaction: In cases where it is unclear whether the name actually designates something, it seems desirable that the name is at least allowed to function semantically.
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Definite descriptions may not be referring expressions, since they can fail to refer [Sainsbury]
     Full Idea: Almost everyone agrees that intelligible definite descriptions may lack a referent; this has historically been a reason for not counting them among referring expressions.
     From: Mark Sainsbury (The Essence of Reference [2006], 18.2)
     A reaction: One might compare indexicals such as 'I', which may be incapable of failing to refer when spoken. However 'look at that!' frequently fails to communicate reference.
Definite descriptions are usually rigid in subject, but not in predicate, position [Sainsbury]
     Full Idea: Definite descriptions used with referential intentions (usually in subject position) are normally rigid, ..but in predicate position they are normally not rigid, because there is no referential intention.
     From: Mark Sainsbury (The Essence of Reference [2006], 18.5)
     A reaction: 'The man in the blue suit is the President' seems to fit, but 'The President is the head of state' doesn't. Seems roughly right, but language is always too complex for philosophers.
8. Modes of Existence / A. Relations / 1. Nature of Relations
The single imagined 'interval' between things only exists in the intellect [Auriol]
     Full Idea: It appears that a single thing, which must be imagined as some sort of interval [intervallum] existing between two things, cannot exist in extramental reality, but only in the intellect.
     From: Peter Auriol (Sentences [1316], I fols318 v a-b), quoted by John Heil - The Universe as We Find It 7
     A reaction: This is the standard medieval denial of the existence of real relations. It contrasts with post-Russell ontology, which seems to admit relations as entities. Heil and Auriol and right.
19. Language / B. Reference / 3. Direct Reference / b. Causal reference
A new usage of a name could arise from a mistaken baptism of nothing [Sainsbury]
     Full Idea: A baptism which, perhaps through some radical mistake, is the baptism of nothing, is as good a propagator of a new use as a baptism of an object.
     From: Mark Sainsbury (The Essence of Reference [2006], 18.3)
     A reaction: An obvious example might be the Loch Ness Monster. There is something intuitively wrong about saying that physical objects are actually part of linguistic meaning or reference. I am not a meaning!
19. Language / B. Reference / 5. Speaker's Reference
Even a quantifier like 'someone' can be used referentially [Sainsbury]
     Full Idea: A large range of expressions can be used with referential intentions, including quantifier phrases (as in 'someone has once again failed to close the door properly').
     From: Mark Sainsbury (The Essence of Reference [2006], 18.5)
     A reaction: This is the pragmatic aspect of reference, where it can be achieved by all sorts of means. But are quantifiers inherently referential in their semantic function? Some of each, it seems.
26. Natural Theory / A. Speculations on Nature / 3. Natural Function
Things are thought to have a function, even when they can't perform them [Sainsbury]
     Full Idea: On one common use of the notion of a function, something can possess a function which it does not, or even cannot, perform. A malformed heart is to pump blood, even if such a heart cannot in fact pump blood.
     From: Mark Sainsbury (The Essence of Reference [2006], 18.2)
     A reaction: One might say that the heart in a dead body had the function of pumping blood, but does it still have that function? Do I have the function of breaking the world 100 metres record, even though I can't quite manage it? Not that simple.
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / b. Prime matter
Prime matter lacks essence, but is only potentially and indeterminately a physical thing [Auriol]
     Full Idea: Prime matter has no essence, nor a nature that is determinate, distinct, and actual. Instead, it is pure potential, and determinable, so that it is indeterminately and indistinctly a material thing.
     From: Peter Auriol (Sentences [1316], II.12.1.1), quoted by Robert Pasnau - Metaphysical Themes 1274-1671 03.1
     A reaction: Pasnau thinks Auriol has the best shot at explaining the vague idea of 'prime matter', with the thought that it exists, but indeterminateness is what gives it a lesser mode of existence. It strikes me as best to treat 'exist' as univocal.
28. God / A. Divine Nature / 4. Divine Contradictions
God can do anything non-contradictory, as making straightness with no line, or lightness with no parts [Auriol]
     Full Idea: If someone says 'God could make straightness without a line, and roughness and lightness in weight without parts', …then show me the reason why God can do whatever does not imply a contradiction, yet cannot do these things.
     From: Peter Auriol (Sentences [1316], IV.12.2.2), quoted by Robert Pasnau - Metaphysical Themes 1274-1671 11.4
     A reaction: How engagingly bonkers. The key idea preceding this is that God can do all sorts of things that are beyond our understanding. He is then obliged to offer some examples.