Combining Texts

All the ideas for 'Set Theory', 'fragments/reports' and 'Principles of Arithmetic, by a new method'

unexpand these ideas     |    start again     |     specify just one area for these texts


20 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y) [Kunen]
     Full Idea: Axiom of Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y). That is, a set is determined by its members. If every z in one set is also in the other set, then the two sets are the same.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z) [Kunen]
     Full Idea: Axiom of Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z). Any pair of entities must form a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
     A reaction: Repeated applications of this can build the hierarchy of sets.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A) [Kunen]
     Full Idea: Axiom of Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A). That is, the union of a set (all the members of the members of the set) must also be a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x) [Kunen]
     Full Idea: Axiom of Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x). That is, there is a set which contains zero and all of its successors, hence all the natural numbers. The principal of induction rests on this axiom.
     From: Kenneth Kunen (Set Theory [1980], §1.7)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Power Set: ∀x ∃y ∀z(z ⊂ x → z ∈ y) [Kunen]
     Full Idea: Power Set Axiom: ∀x ∃y ∀z(z ⊂ x → z ∈ y). That is, there is a set y which contains all of the subsets of a given set. Hence we define P(x) = {z : z ⊂ x}.
     From: Kenneth Kunen (Set Theory [1980], §1.10)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement: ∀x∈A ∃!y φ(x,y) → ∃Y ∀X∈A ∃y∈Y φ(x,y) [Kunen]
     Full Idea: Axiom of Replacement Scheme: ∀x ∈ A ∃!y φ(x,y) → ∃Y ∀X ∈ A ∃y ∈ Y φ(x,y). That is, any function from a set A will produce another set Y.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation:∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y))) [Kunen]
     Full Idea: Axiom of Foundation: ∀x (∃y(y ∈ x) → ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))). Aka the 'Axiom of Regularity'. Combined with Choice, it means there are no downward infinite chains.
     From: Kenneth Kunen (Set Theory [1980], §3.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: ∀A ∃R (R well-orders A) [Kunen]
     Full Idea: Axiom of Choice: ∀A ∃R (R well-orders A). That is, for every set, there must exist another set which imposes a well-ordering on it. There are many equivalent versions. It is not needed in elementary parts of set theory.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Set Existence: ∃x (x = x) [Kunen]
     Full Idea: Axiom of Set Existence: ∃x (x = x). This says our universe is non-void. Under most developments of formal logic, this is derivable from the logical axioms and thus redundant, but we do so for emphasis.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ) [Kunen]
     Full Idea: Comprehension Scheme: for each formula φ without y free, the universal closure of this is an axiom: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ). That is, there must be a set y if it can be defined by the formula φ.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
     A reaction: Unrestricted comprehension leads to Russell's paradox, so restricting it in some way (e.g. by the Axiom of Specification) is essential.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Constructibility: V = L (all sets are constructible) [Kunen]
     Full Idea: Axiom of Constructability: this is the statement V = L (i.e. ∀x ∃α(x ∈ L(α)). That is, the universe of well-founded von Neumann sets is the same as the universe of sets which are actually constructible. A possible axiom.
     From: Kenneth Kunen (Set Theory [1980], §6.3)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
All models of Peano axioms are isomorphic, so the models all seem equally good for natural numbers [Cartwright,R on Peano]
     Full Idea: Peano's axioms are categorical (any two models are isomorphic). Some conclude that the concept of natural number is adequately represented by them, but we cannot identify natural numbers with one rather than another of the isomorphic models.
     From: comment on Giuseppe Peano (Principles of Arithmetic, by a new method [1889], 11) by Richard Cartwright - Propositions 11
     A reaction: This is a striking anticipation of Benacerraf's famous point about different set theory accounts of numbers, where all models seem to work equally well. Cartwright is saying that others have pointed this out.
PA concerns any entities which satisfy the axioms [Peano, by Bostock]
     Full Idea: Peano Arithmetic is about any system of entities that satisfies the Peano axioms.
     From: report of Giuseppe Peano (Principles of Arithmetic, by a new method [1889], 6.3) by David Bostock - Philosophy of Mathematics 6.3
     A reaction: This doesn't sound like numbers in the fullest sense, since those should facilitate counting objects. '3' should mean that number of rose petals, and not just a position in a well-ordered series.
Peano axioms not only support arithmetic, but are also fairly obvious [Peano, by Russell]
     Full Idea: Peano's premises are recommended not only by the fact that arithmetic follows from them, but also by their inherent obviousness.
     From: report of Giuseppe Peano (Principles of Arithmetic, by a new method [1889], p.276) by Bertrand Russell - Regressive Method for Premises in Mathematics p.276
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
We can add Reflexion Principles to Peano Arithmetic, which assert its consistency or soundness [Halbach on Peano]
     Full Idea: Peano Arithmetic cannot derive its own consistency from within itself. But it can be strengthened by adding this consistency statement or by stronger axioms (particularly ones partially expressing soundness). These are known as Reflexion Principles.
     From: comment on Giuseppe Peano (Principles of Arithmetic, by a new method [1889], 1.2) by Volker Halbach - Axiomatic Theories of Truth (2005 ver) 1.2
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Arithmetic can have even simpler logical premises than the Peano Axioms [Russell on Peano]
     Full Idea: Peano's premises are not the ultimate logical premises of arithmetic. Simpler premises and simpler primitive ideas are to be had by carrying our analysis on into symbolic logic.
     From: comment on Giuseppe Peano (Principles of Arithmetic, by a new method [1889], p.276) by Bertrand Russell - Regressive Method for Premises in Mathematics p.276
19. Language / F. Communication / 3. Denial
Contradiction is impossible, since only one side of the argument refers to the true facts [Prodicus, by Didymus the Blind]
     Full Idea: Prodicus insists that contradiction is impossible, since if two people are contradicting each other, they cannot both be speaking of the same fact. Only the one who is speaking the truth is speaking of facts as they are; the other does not speak facts.
     From: report of Prodicus (fragments/reports [c.423 BCE]) by Didymus the Blind - Commentary on Ecclesiastes (frags)
     A reaction: cf. Kant's 100 thalers example
28. God / B. Proving God / 3. Proofs of Evidence / c. Teleological Proof critique
People used to think anything helpful to life was a god, as the Egyptians think the Nile a god [Prodicus]
     Full Idea: In the old days people regarded the sun, the moon, rivers, springs, and everything else which is helpful for life as gods, because we are helped by them, just as the Egyptians regard the Nile as a god.
     From: Prodicus (fragments/reports [c.423 BCE], B05), quoted by Sextus Empiricus - Against the Professors (six books) 9.18
28. God / C. Attitudes to God / 5. Atheism
The gods are just personified human benefits [Prodicus]
     Full Idea: Things from which benefits to human life have been derived have come to be considered deities, such as Demeter and Dionysus.
     From: Prodicus (fragments/reports [c.423 BCE], B5), quoted by (who?) - where?
He denied the existence of the gods, saying they are just exaltations of things useful for life [Prodicus]
     Full Idea: He says that the gods worshipped by men neither exist nor have knowledge, but that the ancients exalted crops and everything else which is useful for life.
     From: Prodicus (fragments/reports [c.423 BCE]), quoted by Anon (Herc) - fragments 1428 19.12