Combining Texts

All the ideas for 'Set Theory', 'Kant and the Critique of Pure Reason' and 'Actualism and Thisness'

unexpand these ideas     |    start again     |     specify just one area for these texts


18 ideas

1. Philosophy / C. History of Philosophy / 4. Later European Philosophy / c. Eighteenth century philosophy
Hamann, Herder and Jacobi were key opponents of the Enlightenment [Gardner]
     Full Idea: Hamann, Herder and Jacobi are central figues in the reaction against Enlightenment.
     From: Sebastian Gardner (Kant and the Critique of Pure Reason [1999], 10 'immediate')
     A reaction: From a British perspective I would see Hume as the leading such figure. Hamann emphasised the neglect of the role of language. Jacobi was a Christian.
Kant halted rationalism, and forced empiricists to worry about foundations [Gardner]
     Full Idea: Kant's Critique swiftly brought rationalism to a halt, and after Kant empiricism has displayed a nervousness regarding its foundations, and been forced to assume more sophisticated forms.
     From: Sebastian Gardner (Kant and the Critique of Pure Reason [1999], 10 Intro)
     A reaction: See the ideas of Laurence Bonjour for a modern revival of rationalism. After Kant philosophers either went existential, or stared gloomily into the obscure depths. Formal logic was seen as a possible rope ladder down.
1. Philosophy / E. Nature of Metaphysics / 3. Metaphysical Systems
Only Kant and Hegel have united nature, morals, politics, aesthetics and religion [Gardner]
     Full Idea: Apart from Hegel, no later philosophical system equals in stature Kant's attempt to weld together the diverse fields of natural science, morality, politics, aesthetics and religion into a systematic overarching epistemological and metaphysical unity.
     From: Sebastian Gardner (Kant and the Critique of Pure Reason [1999], 10)
     A reaction: Earlier candidate are Plato and Aristotle. Earlier Enlightenment figures say little about morality or aesthetics. Hobbes ranges widely. Aquinas covered most things.
2. Reason / E. Argument / 2. Transcendental Argument
Transcendental proofs derive necessities from possibilities (e.g. possibility of experiencing objects) [Gardner]
     Full Idea: A transcendental proof converts a possibility into a necessity: by saying under what conditions experience of objects is possible, transcendental proofs show those conditions to be necessary for us to the extent that we have any experience of objects.
     From: Sebastian Gardner (Kant and the Critique of Pure Reason [1999], 02 'Transc')
     A reaction: They appear to be hypothetical necessities, rather than true metaphysical necessities. Gardner is discussing Kant, but seems to be generalising. Hypothetical necessities are easy: if it is flying, it is necessarily above the ground.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y) [Kunen]
     Full Idea: Axiom of Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y). That is, a set is determined by its members. If every z in one set is also in the other set, then the two sets are the same.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z) [Kunen]
     Full Idea: Axiom of Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z). Any pair of entities must form a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
     A reaction: Repeated applications of this can build the hierarchy of sets.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A) [Kunen]
     Full Idea: Axiom of Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A). That is, the union of a set (all the members of the members of the set) must also be a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x) [Kunen]
     Full Idea: Axiom of Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x). That is, there is a set which contains zero and all of its successors, hence all the natural numbers. The principal of induction rests on this axiom.
     From: Kenneth Kunen (Set Theory [1980], §1.7)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Power Set: ∀x ∃y ∀z(z ⊂ x → z ∈ y) [Kunen]
     Full Idea: Power Set Axiom: ∀x ∃y ∀z(z ⊂ x → z ∈ y). That is, there is a set y which contains all of the subsets of a given set. Hence we define P(x) = {z : z ⊂ x}.
     From: Kenneth Kunen (Set Theory [1980], §1.10)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement: ∀x∈A ∃!y φ(x,y) → ∃Y ∀X∈A ∃y∈Y φ(x,y) [Kunen]
     Full Idea: Axiom of Replacement Scheme: ∀x ∈ A ∃!y φ(x,y) → ∃Y ∀X ∈ A ∃y ∈ Y φ(x,y). That is, any function from a set A will produce another set Y.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation:∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y))) [Kunen]
     Full Idea: Axiom of Foundation: ∀x (∃y(y ∈ x) → ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))). Aka the 'Axiom of Regularity'. Combined with Choice, it means there are no downward infinite chains.
     From: Kenneth Kunen (Set Theory [1980], §3.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: ∀A ∃R (R well-orders A) [Kunen]
     Full Idea: Axiom of Choice: ∀A ∃R (R well-orders A). That is, for every set, there must exist another set which imposes a well-ordering on it. There are many equivalent versions. It is not needed in elementary parts of set theory.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Set Existence: ∃x (x = x) [Kunen]
     Full Idea: Axiom of Set Existence: ∃x (x = x). This says our universe is non-void. Under most developments of formal logic, this is derivable from the logical axioms and thus redundant, but we do so for emphasis.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ) [Kunen]
     Full Idea: Comprehension Scheme: for each formula φ without y free, the universal closure of this is an axiom: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ). That is, there must be a set y if it can be defined by the formula φ.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
     A reaction: Unrestricted comprehension leads to Russell's paradox, so restricting it in some way (e.g. by the Axiom of Specification) is essential.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Constructibility: V = L (all sets are constructible) [Kunen]
     Full Idea: Axiom of Constructability: this is the statement V = L (i.e. ∀x ∃α(x ∈ L(α)). That is, the universe of well-founded von Neumann sets is the same as the universe of sets which are actually constructible. A possible axiom.
     From: Kenneth Kunen (Set Theory [1980], §6.3)
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Modern geoemtry is either 'pure' (and formal), or 'applied' (and a posteriori) [Gardner]
     Full Idea: There is now 'pure' geometry, consisting of formal systems based on axioms for which truth is not claimed, and which are consequently not synthetic; and 'applied', a branch of physics, the truth of which is empirical, and therefore not a priori.
     From: Sebastian Gardner (Kant and the Critique of Pure Reason [1999], 03 'Maths')
     A reaction: His point is that there is no longer any room for a priori geometry. Might the same division be asserted of arithmetic, or analysis, or set theory?
7. Existence / C. Structure of Existence / 6. Fundamentals / c. Monads
Leibnizian monads qualify as Kantian noumena [Gardner]
     Full Idea: Leibnizian monads clearly satisfy Kant's definition of noumena.
     From: Sebastian Gardner (Kant and the Critique of Pure Reason [1999], 06 'Noumena')
     A reaction: This needs qualifying, because Leibniz clearly specifies the main attributes of monads, where Kant is adamant that we can saying virtually nothing about noumena.
9. Objects / A. Existence of Objects / 5. Individuation / d. Individuation by haecceity
Adams says actual things have haecceities, but not things that only might exist [Adams,RM, by Stalnaker]
     Full Idea: Adams favours haecceitism about actual things but no haecceities for things that might exist but don't.
     From: report of Robert Merrihew Adams (Actualism and Thisness [1981]) by Robert C. Stalnaker - Mere Possibilities 4.2
     A reaction: This contrasts with Plantinga, who proposes necessary essences for everything, even for what might exist. Plantinga sounds crazy to me, Adams merely interesting but not too plausible.