Combining Texts

All the ideas for 'Existentialism: an introduction', 'Sketch for a Theory of the Emotions' and 'Philosophies of Mathematics'

unexpand these ideas     |    start again     |     specify just one area for these texts


55 ideas

1. Philosophy / H. Continental Philosophy / 2. Phenomenology
Phenomenologists say all experience is about something and is directed [Aho]
     Full Idea: Phenomenologists agree that all experience has an intentional structure, that is, my experience is always about or of something; it is always directed towards an object.
     From: Kevin Aho (Existentialism: an introduction [2014], 2 'Phenomenology')
     A reaction: I am just beginning to grasp that the analytic debates about perception are a re-enactment of the Kantian debates about the thing-in-itself. This is the sort of idea you find in McDowell. Presumably the idea denies the Given, and raw sense-data.
2. Reason / D. Definition / 7. Contextual Definition
Contextual definitions replace a complete sentence containing the expression [George/Velleman]
     Full Idea: A contextual definition shows how to analyse an expression in situ, by replacing a complete sentence (of a particular form) in which the expression occurs by another in which it does not.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.2)
     A reaction: This is a controversial procedure, which (according to Dummett) Frege originally accepted, and later rejected. It might not be the perfect definition that replacing just the expression would give you, but it is a promising step.
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative definitions quantify over the thing being defined [George/Velleman]
     Full Idea: When a definition contains a quantifier whose range includes the very entity being defined, the definition is said to be 'impredicative'.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.2)
     A reaction: Presumably they are 'impredicative' because they do not predicate a new quality in the definiens, but make use of the qualities already known.
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'power set' of A is all the subsets of A [George/Velleman]
     Full Idea: The 'power set' of A is all the subsets of A. P(A) = {B : B ⊆ A}.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
Cartesian Product A x B: the set of all ordered pairs in which a∈A and b∈B [George/Velleman]
     Full Idea: The 'Cartesian Product' of any two sets A and B is the set of all ordered pairs <a, b> in which a ∈ A and b ∈ B, and it is denoted as A x B.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
The 'ordered pair' <a, b>, for two sets a and b, is the set {{a, b},{a}} [George/Velleman]
     Full Idea: The 'ordered pair' <a, b>, for two sets a and b, is the set {{a, b},{a}}. The existence of this set is guaranteed by three applications of the Axiom of Pairing.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: See Idea 10100 for the Axiom of Pairing.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / e. Equivalence classes
Grouping by property is common in mathematics, usually using equivalence [George/Velleman]
     Full Idea: The idea of grouping together objects that share some property is a common one in mathematics, ...and the technique most often involves the use of equivalence relations.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
'Equivalence' is a reflexive, symmetric and transitive relation; 'same first letter' partitions English words [George/Velleman]
     Full Idea: A relation is an equivalence relation if it is reflexive, symmetric and transitive. The 'same first letter' is an equivalence relation on the set of English words. Any relation that puts a partition into clusters will be equivalence - and vice versa.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: This is a key concept in the Fregean strategy for defining numbers.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Even the elements of sets in ZFC are sets, resting on the pure empty set [George/Velleman]
     Full Idea: ZFC is a theory concerned only with sets. Even the elements of all of the sets studied in ZFC are also sets (whose elements are also sets, and so on). This rests on one clearly pure set, the empty set Φ. ..Mathematics only needs pure sets.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: This makes ZFC a much more metaphysically comfortable way to think about sets, because it can be viewed entirely formally. It is rather hard to disentangle a chair from the singleton set of that chair.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Axiom of Extensionality: for all sets x and y, if x and y have the same elements then x = y [George/Velleman]
     Full Idea: The Axiom of Extensionality says that for all sets x and y, if x and y have the same elements then x = y.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: This seems fine in pure set theory, but hits the problem of renates and cordates in the real world. The elements coincide, but the axiom can't tell you why they coincide.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Axiom of Pairing: for all sets x and y, there is a set z containing just x and y [George/Velleman]
     Full Idea: The Axiom of Pairing says that for all sets x and y, there is a set z containing x and y, and nothing else. In symbols: ∀x∀y∃z∀w(w ∈ z ↔ (w = x ∨ w = y)).
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: See Idea 10099 for an application of this axiom.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
The Axiom of Reducibility made impredicative definitions possible [George/Velleman]
     Full Idea: The Axiom of Reducibility ...had the effect of making impredicative definitions possible.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
ZFC can prove that there is no set corresponding to the concept 'set' [George/Velleman]
     Full Idea: Sets, unlike extensions, fail to correspond to all concepts. We can prove in ZFC that there is no set corresponding to the concept 'set' - that is, there is no set of all sets.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.4)
     A reaction: This is rather an important point for Frege. However, all concepts have extensions, but they may be proper classes, rather than precisely defined sets.
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
As a reduction of arithmetic, set theory is not fully general, and so not logical [George/Velleman]
     Full Idea: The problem with reducing arithmetic to ZFC is not that this theory is inconsistent (as far as we know it is not), but rather that is not completely general, and for this reason not logical. For example, it asserts the existence of sets.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.4)
     A reaction: Note that ZFC has not been proved consistent.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Asserting Excluded Middle is a hallmark of realism about the natural world [George/Velleman]
     Full Idea: A hallmark of our realist stance towards the natural world is that we are prepared to assert the Law of Excluded Middle for all statements about it. For all statements S, either S is true, or not-S is true.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.4)
     A reaction: Personally I firmly subscribe to realism, so I suppose I must subscribe to Excluded Middle. ...Provided the statement is properly formulated. Or does liking excluded middle lead me to realism?
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A 'model' is a meaning-assignment which makes all the axioms true [George/Velleman]
     Full Idea: A 'model' of a theory is an assignment of meanings to the symbols of its language which makes all of its axioms come out true.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7)
     A reaction: If the axioms are all true, and the theory is sound, then all of the theorems will also come out true.
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
Differences between isomorphic structures seem unimportant [George/Velleman]
     Full Idea: Mathematicians tend to regard the differences between isomorphic mathematical structures as unimportant.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: This seems to be a pointer towards Structuralism as the underlying story in mathematics. The intrinsic character of so-called 'objects' seems unimportant. How theories map onto one another (and onto the world?) is all that matters?
5. Theory of Logic / K. Features of Logics / 2. Consistency
Consistency is a purely syntactic property, unlike the semantic property of soundness [George/Velleman]
     Full Idea: Consistency is a purely syntactic property, unlike the semantic property of soundness.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.6)
A 'consistent' theory cannot contain both a sentence and its negation [George/Velleman]
     Full Idea: If there is a sentence such that both the sentence and its negation are theorems of a theory, then the theory is 'inconsistent'. Otherwise it is 'consistent'.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7)
5. Theory of Logic / K. Features of Logics / 3. Soundness
Soundness is a semantic property, unlike the purely syntactic property of consistency [George/Velleman]
     Full Idea: Soundness is a semantic property, unlike the purely syntactic property of consistency.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.6)
5. Theory of Logic / K. Features of Logics / 4. Completeness
A 'complete' theory contains either any sentence or its negation [George/Velleman]
     Full Idea: If there is a sentence such that neither the sentence nor its negation are theorems of a theory, then the theory is 'incomplete'. Otherwise it is 'complete'.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7)
     A reaction: Interesting questions are raised about undecidable sentences, irrelevant sentences, unknown sentences....
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Rational numbers give answers to division problems with integers [George/Velleman]
     Full Idea: We can think of rational numbers as providing answers to division problems involving integers.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: Cf. Idea 10102.
The integers are answers to subtraction problems involving natural numbers [George/Velleman]
     Full Idea: In defining the integers in set theory, our definition will be motivated by thinking of the integers as answers to subtraction problems involving natural numbers.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: Typical of how all of the families of numbers came into existence; they are 'invented' so that we can have answers to problems, even if we can't interpret the answers. It it is money, we may say the minus-number is a 'debt', but is it? Cf Idea 10106.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers provide answers to square root problems [George/Velleman]
     Full Idea: One reason for introducing the real numbers is to provide answers to square root problems.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: Presumably the other main reasons is to deal with problems of exact measurement. It is interesting that there seem to be two quite distinct reasons for introducing the reals. Cf. Ideas 10102 and 10106.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
Logicists say mathematics is applicable because it is totally general [George/Velleman]
     Full Idea: The logicist idea is that if mathematics is logic, and logic is the most general of disciplines, one that applies to all rational thought regardless of its content, then it is not surprising that mathematics is widely applicable.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.2)
     A reaction: Frege was keen to emphasise this. You are left wondering why pure logic is applicable to the physical world. The only account I can give is big-time Platonism, or Pythagoreanism. Logic reveals the engine-room of nature, where the design is done.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
The classical mathematician believes the real numbers form an actual set [George/Velleman]
     Full Idea: Unlike the intuitionist, the classical mathematician believes in an actual set that contains all the real numbers.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.6)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Second-order induction is stronger as it covers all concepts, not just first-order definable ones [George/Velleman]
     Full Idea: The first-order version of the induction axiom is weaker than the second-order, because the latter applies to all concepts, but the first-order applies only to concepts definable by a formula in the first-order language of number theory.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7 n7)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
The Incompleteness proofs use arithmetic to talk about formal arithmetic [George/Velleman]
     Full Idea: The idea behind the proofs of the Incompleteness Theorems is to use the language of Peano Arithmetic to talk about the formal system of Peano Arithmetic itself.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7)
     A reaction: The mechanism used is to assign a Gödel Number to every possible formula, so that all reasonings become instances of arithmetic.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
A successor is the union of a set with its singleton [George/Velleman]
     Full Idea: For any set x, we define the 'successor' of x to be the set S(x) = x U {x}.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: This is the Fregean approach to successor, where the Dedekind approach takes 'successor' to be a primitive. Frege 1884:§76.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
Frege's Theorem shows the Peano Postulates can be derived from Hume's Principle [George/Velleman]
     Full Idea: The derivability of Peano's Postulates from Hume's Principle in second-order logic has been dubbed 'Frege's Theorem', (though Frege would not have been interested, because he didn't think Hume's Principle gave an adequate definition of numebrs).
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.8 n1)
     A reaction: Frege said the numbers were the sets which were the extensions of the sets created by Hume's Principle.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory can prove the Peano Postulates [George/Velleman]
     Full Idea: The Peano Postulates can be proven in ZFC.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7)
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Talk of 'abstract entities' is more a label for the problem than a solution to it [George/Velleman]
     Full Idea: One might well wonder whether talk of abstract entities is less a solution to the empiricist's problem of how a priori knowledge is possible than it is a label for the problem.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Intro)
     A reaction: This pinpoints my view nicely. What the platonist postulates is remote, bewildering, implausible and useless!
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
If mathematics is not about particulars, observing particulars must be irrelevant [George/Velleman]
     Full Idea: As, in the logicist view, mathematics is about nothing particular, it is little wonder that nothing in particular needs to be observed in order to acquire mathematical knowledge.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002])
     A reaction: At the very least we can say that no one would have even dreamt of the general system of arithmetic is they hadn't had experience of the particulars. Frege thought generality ensured applicability, but extreme generality might entail irrelevance.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Type theory prohibits (oddly) a set containing an individual and a set of individuals [George/Velleman]
     Full Idea: If a is an individual and b is a set of individuals, then in the theory of types we cannot talk about the set {a,b}, since it is not an individual or a set of individuals, ...but it is hard to see what harm can come from it.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
In the unramified theory of types, the types are objects, then sets of objects, sets of sets etc. [George/Velleman]
     Full Idea: In the unramified theory of types, all objects are classified into a hierarchy of types. The lowest level has individual objects that are not sets. Next come sets whose elements are individuals, then sets of sets, etc. Variables are confined to types.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: The objects are Type 0, the basic sets Type 1, etc.
Type theory has only finitely many items at each level, which is a problem for mathematics [George/Velleman]
     Full Idea: A problem with type theory is that there are only finitely many individuals, and finitely many sets of individuals, and so on. The hierarchy may be infinite, but each level is finite. Mathematics required an axiom asserting infinitely many individuals.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: Most accounts of mathematics founder when it comes to infinities. Perhaps we should just reject them?
The theory of types seems to rule out harmless sets as well as paradoxical ones. [George/Velleman]
     Full Idea: The theory of types seems to rule out harmless sets as well as paradoxical ones. If a is an individual and b is a set of individuals, then in type theory we cannot talk about the set {a,b}.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: Since we cheerfully talk about 'Cicero and other Romans', this sounds like a rather disasterous weakness.
6. Mathematics / C. Sources of Mathematics / 8. Finitism
Much infinite mathematics can still be justified finitely [George/Velleman]
     Full Idea: It is possible to use finitary reasoning to justify a significant part of infinitary mathematics.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.8)
     A reaction: This might save Hilbert's project, by gradually accepting into the fold all the parts which have been giving a finitist justification.
Bounded quantification is originally finitary, as conjunctions and disjunctions [George/Velleman]
     Full Idea: In the first instance all bounded quantifications are finitary, for they can be viewed as abbreviations for conjunctions and disjunctions.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.6)
     A reaction: This strikes me as quite good support for finitism. The origin of a concept gives a good guide to what it really means (not a popular view, I admit). When Aristotle started quantifying, I suspect of he thought of lists, not totalities.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Gödel's First Theorem suggests there are truths which are independent of proof [George/Velleman]
     Full Idea: For intuitionists, truth is not independent of proof, but this independence is precisely what seems to be suggested by Gödel's First Incompleteness Theorem.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.8)
     A reaction: Thus Gödel was worse news for the Intuitionists than he was for Hilbert's Programme. Gödel himself responded by becoming a platonist about his unprovable truths.
The intuitionists are the idealists of mathematics [George/Velleman]
     Full Idea: The intuitionists are the idealists of mathematics.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.6)
14. Science / B. Scientific Theories / 2. Aim of Science
Science has to abstract out the subjective attributes of things, focusing on what is objective [Aho]
     Full Idea: Crucial to the scientific method is the ability to abstract out the subjective qualities that we give to things - such as beauty, meaning, purpose, and value - and focus only on the objective qualities of things, which can be measured and quantified.
     From: Kevin Aho (Existentialism: an introduction [2014], 1 'Emergence')
     A reaction: This seems to me exactly right. People who deny the primary/secondary distinction, like Hume, are usually correspondingly pessimistic about science. And Hume was wrong about that.
15. Nature of Minds / B. Features of Minds / 1. Consciousness / b. Essence of consciousness
Consciousness always transcends itself [Sartre]
     Full Idea: It is of the essence of consciousness to transcend itself
     From: Jean-Paul Sartre (Sketch for a Theory of the Emotions [1939], §III)
     A reaction: As usual, I am a bit baffled by these sorts of pronouncement. Sounds like an oxymoron to me. Maybe it is a development of Schopenhauer's thought.
18. Thought / A. Modes of Thought / 3. Emotions / a. Nature of emotions
An emotion and its object form a unity, so emotion is a mode of apprehension [Sartre]
     Full Idea: Emotion returns to its object every moment, and feeds upon it. …The emotional subject and the object of the emotion are united in an indissoluble synthesis. Emotion is a specific manner of apprehending the world. …[39] It is a transformation of the world.
     From: Jean-Paul Sartre (Sketch for a Theory of the Emotions [1939], §III)
     A reaction: The last sentence is the essence (or existence?) of Sartre's core theory of the emotions. They are, it seems, a mode of perception, like a colour filter added to a camera. I don't think I agree. I see them as a response to perceptions, not part of them.
Emotion is one of our modes of understanding our Being-in-the-World [Sartre]
     Full Idea: Emotion is not an accident, it is a mode of our conscious existence, one of the ways in which consciousness understands (in Heidegger's sense of verstehen) its Being-in-the-World. …It has a meaning.
     From: Jean-Paul Sartre (Sketch for a Theory of the Emotions [1939], §III)
     A reaction: Calling emotions a 'mode' suggests that this way of understanding is intermittent, which seems wrong. Even performing arithmetical calculations is coloured by emotions, so they go deeper than a 'mode'.
18. Thought / A. Modes of Thought / 3. Emotions / c. Role of emotions
Emotions are a sort of bodily incantation which brings a magic to the world [Sartre]
     Full Idea: Joy is the magical behaviour which tries, by incantation, to realise the possession of the desired object as an instantaneous totality. [47] Emotions are all reducible to the constitution of a magic world by using our bodies as instruments of incantation.
     From: Jean-Paul Sartre (Sketch for a Theory of the Emotions [1939], §III)
     A reaction: I can't pretend to understand this, but I am reminded of the fact that the so-called primary qualities of perception are innately boring, and it is only the secondary qualities (like colour and smell) which make the world interesting.
Emotions makes us believe in and live in a new world [Sartre]
     Full Idea: Emotion is a phenomenon of belief. Consciousness does not limit itself to the projection of affective meanings upon the world around it; it lives the new world it has thereby constituted.
     From: Jean-Paul Sartre (Sketch for a Theory of the Emotions [1939], §III)
     A reaction: There seems to be an implied anti-realism in this, since the emotions prevent us from relating more objectively to the world. The 'magic' seems to be compulsory.
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Corresponding to every concept there is a class (some of them sets) [George/Velleman]
     Full Idea: Corresponding to every concept there is a class (some classes will be sets, the others proper classes).
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.4)
23. Ethics / F. Existentialism / 3. Angst
Anxiety, nausea, guilt and absurdity shake us up, revealing our freedom and limits [Aho]
     Full Idea: Some moods, such as 'anxiety' (Heidegger), 'nausea' (Sartre), 'guilt' (Kierkegaard), and 'absurdity' (Camus) are important because they have the capacity to shake us out of complacency and self-deception, disclosing our freedom and finitude.
     From: Kevin Aho (Existentialism: an introduction [2014], Pref 'What?)
     A reaction: [bit compressed] Problem: if I fail to feel such things, and deliberately induce them in myself, am I being inauthentic? Making a huge and unnatural effort to be an existentialist seems all wrong. And who wants the permanent grip of such feelings?
23. Ethics / F. Existentialism / 5. Existence-Essence
Our 'existence' is how we create ourselves, unconstrained by any prior 'essence' [Aho]
     Full Idea: 'Existence precedes essence' means there is no pre-given 'essence' that determines who and what we are. We are self-making beings.
     From: Kevin Aho (Existentialism: an introduction [2014], Pref 'What?)
     A reaction: This not a yes/no dilemma. Personally I believe (with Aristotle, and Steven Pinker) that there is a fairly comprehensive 'human nature' which we all share, and is the basis of ethics. On top of that, though, a fair bit of 'self-making' can go on.
23. Ethics / F. Existentialism / 6. Authentic Self
The self is constituted by its choices made within a social context [Aho]
     Full Idea: The [existential] self is constituted by the continuous, open-ended process of choosing and pulling together the social interpretations that we care about and that are made available by the situation we grow into.
     From: Kevin Aho (Existentialism: an introduction [2014], 4 'Self')
     A reaction: These kind of explanations always seem wrong. That the self is influenced and moulded strongly by the choices it makes sounds right. But that the choices 'constitute' the chooser sounds like a bit of a muddle.
24. Political Theory / B. Nature of a State / 1. Purpose of a State
States have a monopoly of legitimate violence [Sartre, by Wolff,J]
     Full Idea: Max Weber observed that states possess a monopoly of legitimate violence.
     From: report of Jean-Paul Sartre (Sketch for a Theory of the Emotions [1939]) by Jonathan Wolff - An Introduction to Political Philosophy (Rev) 2 'State'
     A reaction: This sounds rather hair-raising, and often is, but it sounds quite good if we describe it as a denial of legitimate violence to individual citizens. Hobbes would like it, since individual violence breaches some sort of natural contract. Guns in USA.
24. Political Theory / B. Nature of a State / 2. State Legitimacy / c. Social contract
Social contracts and markets have made society seem disconnected and artificial [Aho]
     Full Idea: Modern society has come to be viewed as something artificial, an aggregate of disconnected individuals that is held together by instrumental social contracts and monetary exchanges.
     From: Kevin Aho (Existentialism: an introduction [2014], 1 'Emergence')
     A reaction: This is all long of you, Thomas Hobbes! Aho is explaining the rebellion of existentialists against this - though existentialism strikes me as another variant of liberal individualism.
29. Religion / B. Monotheistic Religion / 4. Christianity / a. Christianity
Protestantism brought the modern emphasis on inner states of the soul [Aho]
     Full Idea: An important development in the formation of the modern worldview was the emergence of Protestantism, that reconfigured the self by privileging the inner states of the soul. Salvation concerns inner feelings, thoughts and desires, which can be genuine.
     From: Kevin Aho (Existentialism: an introduction [2014], 1 'Emergence')
     A reaction: [bit compressed] He is preparing the historical background for the existentialist concept of authenticity. We can link this Protestant idea with Descartes's Cogito, which grounds knowledge in the inner self.
29. Religion / C. Spiritual Disciplines / 3. Buddhism
Four Noble Truths: life is suffering, caused by attachment, it is avoidable, there is a path [Aho]
     Full Idea: The teachings of the Buddha are summarised in 'four noble truths': 1) life means suffering, 2) the origin of suffering is attachment, 3) the end of suffering is attainable, and 4) the path to the end of suffering.
     From: Kevin Aho (Existentialism: an introduction [2014], 9 'dukkha')
     A reaction: 1) and 2) summarise everything I dislike about most eastern philosophy. In the modern world life does not have to be suffering. To break off attachments in order to avoid suffering is a hideous injunction.