Combining Texts

All the ideas for 'Precis of 'Limits of Abstraction'', 'The Particle Zoo' and 'Events'

unexpand these ideas     |    start again     |     specify just one area for these texts


31 ideas

2. Reason / D. Definition / 2. Aims of Definition
Definitions concern how we should speak, not how things are [Fine,K]
     Full Idea: Our concern in giving a definition is not to say how things are by to say how we wish to speak
     From: Kit Fine (Precis of 'Limits of Abstraction' [2005], p.310)
     A reaction: This sounds like an acceptable piece of wisdom which arises out of analytical and linguistic philosophy. It puts a damper on the Socratic dream of using definition of reveal the nature of reality.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
If Hume's Principle can define numbers, we needn't worry about its truth [Fine,K]
     Full Idea: Neo-Fregeans have thought that Hume's Principle, and the like, might be definitive of number and therefore not subject to the usual epistemological worries over its truth.
     From: Kit Fine (Precis of 'Limits of Abstraction' [2005], p.310)
     A reaction: This seems to be the underlying dream of logicism - that arithmetic is actually brought into existence by definitions, rather than by truths derived from elsewhere. But we must be able to count physical objects, as well as just counting numbers.
Hume's Principle is either adequate for number but fails to define properly, or vice versa [Fine,K]
     Full Idea: The fundamental difficulty facing the neo-Fregean is to either adopt the predicative reading of Hume's Principle, defining numbers, but inadequate, or the impredicative reading, which is adequate, but not really a definition.
     From: Kit Fine (Precis of 'Limits of Abstraction' [2005], p.312)
     A reaction: I'm not sure I understand this, but the general drift is the difficulty of building a system which has been brought into existence just by definition.
7. Existence / B. Change in Existence / 4. Events / a. Nature of events
The events that suit semantics may not be the events that suit causation [Lewis]
     Full Idea: There is no guarantee that events made for semantics are the same as events that are causes and effects.
     From: David Lewis (Events [1986], I)
     A reaction: This little cri de couer could be a motto for a huge amount of analytic philosophy, which (for some odd reason) thought that mathematics, logic, set theory and formal semantics were good tools for explaining nature.
Events have inbuilt essences, as necessary conditions for their occurrence [Lewis]
     Full Idea: Events have their essences built in, in the form of necessary conditions for their occurrence.
     From: David Lewis (Events [1986], III)
     A reaction: Revealing. He thinks the essence of an event is something which precedes the event. I take it as obvious that if an event has an essence, it will be some features of the event that occur in it and during it. They need to be intrinsic.
Events are classes, and so there is a mereology of their parts [Lewis]
     Full Idea: If events are classes, as I propose, then they have a mereology in the way that all classes do: the parts of a class are its subclasses.
     From: David Lewis (Events [1986], V)
     A reaction: Lewis says events are properties, which he regards as classes. It is not clear that events are strictly mereological. Could one happening be two events? Is WWII a simple sum of its parts? [see p.260]
Some events involve no change; they must, because causal histories involve unchanges [Lewis]
     Full Idea: Not all events involve change. We cannot afford to count the unchanges as nonevents, for the unchanges may be needed to complete causal histories.
     From: David Lewis (Events [1986], VI)
     A reaction: You end up calling non-changes 'events' if you commit to a simplistic theory that all causal histories consist of events. Why not allow conditions as well as events? Lewis concedes that he may be abusing language.
7. Existence / B. Change in Existence / 4. Events / c. Reduction of events
An event is a property of a unique space-time region [Lewis]
     Full Idea: I propose to identify an event with a property, or in other words with a class, a unique spatio-temporal region corresponding to where that event occurs.
     From: David Lewis (Events [1986], II)
     A reaction: [I've run together two separate bits, on p.244 and 245] Lewis cites Montague's similar view, that events are properties of times.
8. Modes of Existence / B. Properties / 10. Properties as Predicates
Properties are very abundant (unlike universals), and are used for semantics and higher-order variables [Lewis]
     Full Idea: Properties are abundant, numbering at least beth-3 for properties of individuals alone; they are suited to serve as semantic values of arbitrarily complex predicates and gerunds, and higher-order variables. (If there are universals, they are sparse).
     From: David Lewis (Events [1986], II n2)
     A reaction: To me this is an outrageous hijacking of the notion of property which is needed for explaining the natural world. He seems to be talking about predicates. He wants to leave me with his silly universals - well I don't want them, thank you.
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
An abstraction principle should not 'inflate', producing more abstractions than objects [Fine,K]
     Full Idea: If an abstraction principle is going to be acceptable, then it should not 'inflate', i.e. it should not result in there being more abstracts than there are objects. By this mark Hume's Principle will be acceptable, but Frege's Law V will not.
     From: Kit Fine (Precis of 'Limits of Abstraction' [2005], p.307)
     A reaction: I take this to be motivated by my own intuition that abstract concepts had better be rooted in the world, or they are not worth the paper they are written on. The underlying idea this sort of abstraction is that it is 'shared' between objects.
26. Natural Theory / C. Causation / 1. Causation
Causation is a general relation derived from instances of causal dependence [Lewis]
     Full Idea: Causation is the ancestral of causal dependence: event c causes event e iff either e depends on c, or e depends on an intermediate event which in turn depends on c, or....
     From: David Lewis (Events [1986], I)
     A reaction: This is Lewis making sure that we don't postulate some huge bogus thing called 'Causation' which is supposed to be in charge of Nature. Good point.
27. Natural Reality / A. Classical Physics / 1. Mechanics / c. Forces
Relativity and Quantum theory give very different accounts of forces [Hesketh]
     Full Idea: General Relativity and quantum mechanics are the two great theories in physics today but they give two very different ideas for how forces work.
     From: Gavin Hesketh (The Particle Zoo [2016], 01)
     A reaction: Relativity says it is space curvature, and quantum theory says it is particle exchange? But is there a Relativity account of the strong nuclear force?
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / a. Energy
Thermodynamics introduced work and entropy, to understand steam engine efficiency [Hesketh]
     Full Idea: The Laws of Thermodynamics introduced the concepts of entropy and work; put simply, how much useful energy you can really get out of a steam engine.
     From: Gavin Hesketh (The Particle Zoo [2016], 03)
     A reaction: The point of science by this stage was to introduce measurable and quantifiable concepts
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / a. Electrodynamics
Photons are B and W° bosons, linked by the Higgs mechanism [Hesketh]
     Full Idea: The photon is actually a mix of two deeper things, the B and the W°, tied together by the Higgs mechanism.
     From: Gavin Hesketh (The Particle Zoo [2016], 06)
     A reaction: The B (for 'Boson') transmits a force associated with the 'winding symmetry'. (I record this without properly understanding it.)
Spinning electric charge produces magnetism, so all fermions are magnets [Hesketh]
     Full Idea: The muon, like all fermions, spins - and because a spinning electric charge generates a magnetic field all fermions act like tiny bar magnets.
     From: Gavin Hesketh (The Particle Zoo [2016], 11)
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / c. Electrons
Electrons may have smaller components, bound by a new force [Hesketh]
     Full Idea: Quarks, leptons or bosons may actually be made up of something even smaller, bound together by a conjectural new force.
     From: Gavin Hesketh (The Particle Zoo [2016], 05)
     A reaction: Electrons are a type of lepton. Compare Idea 21180, from the same book. If electrons are not fundamental, what matters is not some 'stuff' they are made of, but a different force that would bind the ingredients.
Electrons are fundamental and are not made of anything; they are properties without size [Hesketh]
     Full Idea: As far as we can tell, electrons (and quarks) are fundamental. They are not small lumps of material, because we could always ask what the material is. The electron just ...is. They are collections of properties, with no apparent size.
     From: Gavin Hesketh (The Particle Zoo [2016], 01)
     A reaction: This idea from physics HAS to be of interest to philosophers! The bundle theory is discredited for normal objects and for minds, and so is the substrate idea for supporting properties. But rigorous physics accepts a bundle theory.
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / d. Quantum mechanics
Quantum mechanics is our only theory, and is very precise, and repeatedly confirmed [Hesketh]
     Full Idea: Quantum mechanics is the only working description of the universe that we have. It is amazingly precise, and so far every experimental test has verified its predictions.
     From: Gavin Hesketh (The Particle Zoo [2016], 02)
     A reaction: I take it from this that quantum mechanics is simply TRUE. Get over it! It will never turn out to be wrong, but may be subsumed within some more fine-grained or extensive theory.
Physics was rewritten to explain stable electron orbits [Hesketh]
     Full Idea: Explaining the stable electron orbits would require a complete rewriting of the physics of subatomic particles.
     From: Gavin Hesketh (The Particle Zoo [2016], 03)
     A reaction: This really looks like a simple and major landmark moment. You can ignore a single anomaly, but not a central feature of your entire theory.
Virtual particles can't be measured, and can ignore the laws of physics [Hesketh]
     Full Idea: We can never measure these virtual (transitory) particles directly, and it turns out that they don't even have to obey the laws of physics.
     From: Gavin Hesketh (The Particle Zoo [2016], 05)
     A reaction: These seems to be the real significance of the Uncertainty Principle. Such particles 'borrow' huge amounts of energy for very short times.
27. Natural Reality / B. Modern Physics / 3. Chromodynamics / a. Chromodynamics
Colour charge is positive or negative, and also has red, green or blue direction [Hesketh]
     Full Idea: Colour charge is 'three-dimensional'. As well as the charge having a positive or negative sign, it can also have a direction, and for convenience these three different directions (pointing like a weather vane) are labelled 'red', 'green' and 'blue'.
     From: Gavin Hesketh (The Particle Zoo [2016], 04)
27. Natural Reality / B. Modern Physics / 4. Standard Model / b. Standard model
The Standard Model omits gravity, because there are no particles involved [Hesketh]
     Full Idea: Gravity is not included in the Standard Model because we simply cannot study it using particles.
     From: Gavin Hesketh (The Particle Zoo [2016], 09)
     A reaction: I'm guessing that Einstein describes how gravity behaves, but not what it is.
In Supersymmetry the Standard Model simplifies at high energies [Hesketh]
     Full Idea: Supersymmetry suggest that the Standard Model becomes much simpler at high energies.
     From: Gavin Hesketh (The Particle Zoo [2016], 10)
Standard Model forces are one- two- and three-dimensional [Hesketh]
     Full Idea: The forces in the Standard Model are built on gauge symmetries, with a one-dimensional charge (like electromagnetism), a two-dimensional charge (the weak force), and a three dimensional charge (the strong force).
     From: Gavin Hesketh (The Particle Zoo [2016], 10)
     A reaction: See also Idea 21185.
27. Natural Reality / B. Modern Physics / 4. Standard Model / c. Particle properties
Quarks and leptons have a weak charge, for the weak force [Hesketh]
     Full Idea: For the weak force there must be a corresponding 'weak charge', and all the fermions, all the quarks and leptons carry it.
     From: Gavin Hesketh (The Particle Zoo [2016], 05)
     A reaction: So electrons carry a weak charge, as well as an electromagnetic charge. Like owning several passports.
27. Natural Reality / B. Modern Physics / 4. Standard Model / e. Protons
Quarks rush wildly around in protons, restrained by the gluons [Hesketh]
     Full Idea: Inside a proton the quarks are rushing around like caged animals, free to move until they push against the bars to try to escape, when the gluons pull them back in.
     From: Gavin Hesketh (The Particle Zoo [2016], 04)
27. Natural Reality / B. Modern Physics / 4. Standard Model / f. Neutrinos
Neutrinos only interact with the weak force, but decays produce them in huge numbers [Hesketh]
     Full Idea: Neutrinos only interact with the weak force, which means they barely interact at all, but because the weak force is crucial in the decays of so many other particles, neutrinos are still produced in huge numbers.
     From: Gavin Hesketh (The Particle Zoo [2016], 08)
     A reaction: They only interact with the W and Z bosons.
27. Natural Reality / B. Modern Physics / 5. Unified Models / c. Supersymmetry
To combine the forces, they must all be the same strength at some point [Hesketh]
     Full Idea: If all the forces are to combine, at some point they must all be the same strength, and Supersymmetry (SuSy) makes this happen.
     From: Gavin Hesketh (The Particle Zoo [2016], 10)
     A reaction: This sounds like an impressive reason for favouring supersymmetry - as long as you have an a priori preference for everything combining.
27. Natural Reality / C. Space / 5. Relational Space
'Space' in physics just means location [Hesketh]
     Full Idea: 'Space' in physics really just means location.
     From: Gavin Hesketh (The Particle Zoo [2016], 06)
     A reaction: Location can, of course, only be specified relative to something else. Space is really an abstraction, but at least it means there is some sort of background to locate all the fundamental fields.
27. Natural Reality / E. Cosmology / 8. Dark Matter
The universe is 68% dark energy, 27% dark matter, 5% regular matter [Hesketh]
     Full Idea: The most precise surveys of the stars and galaxies tell us that the universe is made up of 68% dark energy, 27% dark matter, and just 5% regular matter (the stuff of the Standard Model of particle physics).
     From: Gavin Hesketh (The Particle Zoo [2016], 09)
     A reaction: Regular matter - that's me, that is.
27. Natural Reality / E. Cosmology / 9. Fine-Tuned Universe
If a cosmic theory relies a great deal on fine-tuning basic values, it is probably wrong [Hesketh]
     Full Idea: If a theory has to rely on excessive 'fine-tuning', a series of extremely unlikely events in order to produce the universe we see around us, then it is extremely unlikely that this theory is correct.
     From: Gavin Hesketh (The Particle Zoo [2016], 10)
     A reaction: He says the Standard Model has 26 parameters which are only known by experiment, rather than by theory. So instead of saying '...so there is a God', we should say '...so our theory isn't very good'.