Combining Texts

All the ideas for 'Some Puzzles of Ground', 'Maths as a Science of Patterns' and 'Letters to Queen Charlotte'

unexpand these ideas     |    start again     |     specify just one area for these texts


15 ideas

4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
Axioms are often affirmed simply because they produce results which have been accepted [Resnik]
     Full Idea: Many axioms have been proposed, not on the grounds that they can be directly known, but rather because they produce a desired body of previously recognised results.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], One.5.1)
     A reaction: This is the perennial problem with axioms - whether we start from them, or whether we deduce them after the event. There is nothing wrong with that, just as we might infer the existence of quarks because of their results.
4. Formal Logic / E. Nonclassical Logics / 3. Many-Valued Logic
Strong Kleene disjunction just needs one true disjunct; Weak needs the other to have some value [Fine,K]
     Full Idea: Under strong Kleene tables, a disjunction will be true if one of the disjuncts is true, regardless of whether or not the other disjunct has a truth-value; under the weak table it is required that the other disjunct also have a value. So for other cases.
     From: Kit Fine (Some Puzzles of Ground [2010], n7)
     A reaction: [see also p.111 of Fine's article] The Kleene tables seem to be the established form of modern three-valued logic, with the third value being indeterminate.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematical realism says that maths exists, is largely true, and is independent of proofs [Resnik]
     Full Idea: Mathematical realism is the doctrine that mathematical objects exist, that much contemporary mathematics is true, and that the existence and truth in question is independent of our constructions, beliefs and proofs.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], Three.12.9)
     A reaction: As thus defined, I would call myself a mathematical realist, but everyone must hesitate a little at the word 'exist' and ask, how does it exist? What is it 'made of'? To say that it exists in the way that patterns exist strikes me as very helpful.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
We know mathematical axioms, such as subtracting equals from equals leaves equals, by a natural light [Leibniz]
     Full Idea: It is by the natural light that the axioms of mathematics are recognised. If we take away the same quantity from two equal things, …a thing we can easily predict without having experienced it.
     From: Gottfried Leibniz (Letters to Queen Charlotte [1702], p.189)
     A reaction: He also says two equal weights will keep a balance level. Plato thinks his slave boy understands halving an area by the natural light, but that is just as likely to be experience. It is too easy to attribut thoughts to a 'natural light'.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Mathematical constants and quantifiers only exist as locations within structures or patterns [Resnik]
     Full Idea: In maths the primary subject-matter is not mathematical objects but structures in which they are arranged; our constants and quantifiers denote atoms, structureless points, or positions in structures; they have no identity outside a structure or pattern.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], Three.10.1)
     A reaction: This seems to me a very promising idea for the understanding of mathematics. All mathematicians acknowledge that the recognition of patterns is basic to the subject. Even animals recognise patterns. It is natural to invent a language of patterns.
Sets are positions in patterns [Resnik]
     Full Idea: On my view, sets are positions in certain patterns.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], Three.10.5)
     A reaction: I have always found the ontology of a 'set' puzzling, because they seem to depend on prior reasons why something is a member of a given set, which cannot always be random. It is hard to explain sets without mentioning properties.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Structuralism must explain why a triangle is a whole, and not a random set of points [Resnik]
     Full Idea: An objection is that structuralism fails to explain why certain mathematical patterns are unified wholes while others are not; for instance, some think that an ontological account of mathematics must explain why a triangle is not a 'random' set of points.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], Three.10.4)
     A reaction: This is an indication that we are not just saying that we recognise patterns in nature, but that we also 'see' various underlying characteristics of the patterns. The obvious suggestion is that we see meta-patterns.
There are too many mathematical objects for them all to be mental or physical [Resnik]
     Full Idea: If we take mathematics at its word, there are too many mathematical objects for it to be plausible that they are all mental or physical objects.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], One.1)
     A reaction: No one, of course, has ever claimed that they are, but this is a good starting point for assessing the ontology of mathematics. We are going to need 'rules', which can deduce the multitudinous mathematical objects from a small ontology.
Maths is pattern recognition and representation, and its truth and proofs are based on these [Resnik]
     Full Idea: I argue that mathematical knowledge has its roots in pattern recognition and representation, and that manipulating representations of patterns provides the connection between the mathematical proof and mathematical truth.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], One.1)
     A reaction: The suggestion that patterns are at the basis of the ontology of mathematics is the most illuminating thought I have encountered in the area. It immediately opens up the possibility of maths being an entirely empirical subject.
Congruence is the strongest relationship of patterns, equivalence comes next, and mutual occurrence is the weakest [Resnik]
     Full Idea: Of the equivalence relationships which occur between patterns, congruence is the strongest, equivalence the next, and mutual occurrence the weakest. None of these is identity, which would require the same position.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], Three.10.3)
     A reaction: This gives some indication of how an account of mathematics as a science of patterns might be built up. Presumably the recognition of these 'degrees of strength' cannot be straightforward observation, but will need an a priori component?
7. Existence / C. Structure of Existence / 1. Grounding / a. Nature of grounding
Formal grounding needs transitivity of grounding, no self-grounding, and the existence of both parties [Fine,K]
     Full Idea: The general formal principles of grounding are Transitivity (A«B, B«C/A«C: if A helps ground B and B helps C, then A helps C), Irreflexivity (A«A/absurd: A can't ground itself) and Factivity (A«B/A; A«/B: for grounding both A and B must be the case).
     From: Kit Fine (Some Puzzles of Ground [2010], 4)
9. Objects / D. Essence of Objects / 7. Essence and Necessity / b. Essence not necessities
A necessary feature (such as air for humans) is not therefore part of the essence [Leibniz]
     Full Idea: That which is necessary for something does not constitute its essence. Air is necessary for our life, but our life is something other than air.
     From: Gottfried Leibniz (Letters to Queen Charlotte [1702], 1702)
     A reaction: Bravo. Why can't modern philosophers hang on to this distinction? They seem to think that because they don't believe in traditional essences they can purloin the word for something else. Same with the word 'abstraction'.
10. Modality / D. Knowledge of Modality / 1. A Priori Necessary
Intelligible truth is independent of any external things or experiences [Leibniz]
     Full Idea: Intelligible truth is independent of the truth or of the existence outside us of sensible and material things. ....It is generally true that we only know necessary truths by the natural light [of reason]
     From: Gottfried Leibniz (Letters to Queen Charlotte [1702], 1702)
     A reaction: A nice quotation summarising a view for which Leibniz is famous - that there is a tight correlation between necessary truths and our a priori knowledge of them. The obvious challenge comes from Kripke's claim that scientists can discover necessities.
12. Knowledge Sources / B. Perception / 2. Qualities in Perception / d. Secondary qualities
We know objects by perceptions, but their qualities don't reveal what it is we are perceiving [Leibniz]
     Full Idea: We use the external senses ...to make us know their particular objects ...but they do not make us know what those sensible qualities are ...whether red is small revolving globules causing light, heat a whirling of dust, or sound is waves in air.
     From: Gottfried Leibniz (Letters to Queen Charlotte [1702], 1702)
     A reaction: These seems to be exactly the concept of secondary qualities which Locke was promoting. They are unreliable information about the objects we perceive. Primary qualities are reliable information. I like that distinction.
12. Knowledge Sources / D. Empiricism / 1. Empiricism
There is nothing in the understanding but experiences, plus the understanding itself, and the understander [Leibniz]
     Full Idea: It can be said that there is nothing in the understanding which does not come from the senses, except the understanding itself, or that which understands.
     From: Gottfried Leibniz (Letters to Queen Charlotte [1702], 1702)
     A reaction: Given that Leibniz is labelled as a 'rationalist', this is awfully close to empiricism. Not Locke's 'tabula rasa' perhaps, but Hume's experiences plus associations. Leibniz has a much loftier notion of understanding and reason than Hume does.