Combining Texts

All the ideas for 'Precis of 'Limits of Abstraction'', 'Mathematical Truth' and 'Higher-Order Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


19 ideas

2. Reason / D. Definition / 2. Aims of Definition
Definitions concern how we should speak, not how things are [Fine,K]
     Full Idea: Our concern in giving a definition is not to say how things are by to say how we wish to speak
     From: Kit Fine (Precis of 'Limits of Abstraction' [2005], p.310)
     A reaction: This sounds like an acceptable piece of wisdom which arises out of analytical and linguistic philosophy. It puts a damper on the Socratic dream of using definition of reveal the nature of reality.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The axiom of choice is controversial, but it could be replaced [Shapiro]
     Full Idea: The axiom of choice has a troubled history, but is now standard in mathematics. It could be replaced with a principle of comprehension for functions), or one could omit the variables ranging over functions.
     From: Stewart Shapiro (Higher-Order Logic [2001], n 3)
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is Complete, and Compact, with the Löwenheim-Skolem Theorems [Shapiro]
     Full Idea: Early study of first-order logic revealed a number of important features. Gödel showed that there is a complete, sound and effective deductive system. It follows that it is Compact, and there are also the downward and upward Löwenheim-Skolem Theorems.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Some say that second-order logic is mathematics, not logic [Shapiro]
     Full Idea: Some authors argue that second-order logic (with standard semantics) is not logic at all, but is a rather obscure form of mathematics.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
If the aim of logic is to codify inferences, second-order logic is useless [Shapiro]
     Full Idea: If the goal of logical study is to present a canon of inference, a calculus which codifies correct inference patterns, then second-order logic is a non-starter.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
     A reaction: This seems to be because it is not 'complete'. However, moves like plural quantification seem aimed at capturing ordinary language inferences, so the difficulty is only that there isn't a precise 'calculus'.
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Logical consequence can be defined in terms of the logical terminology [Shapiro]
     Full Idea: Informally, logical consequence is sometimes defined in terms of the meanings of a certain collection of terms, the so-called 'logical terminology'.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
     A reaction: This seems to be a compositional account, where we build a full account from an account of the atomic bits, perhaps presented as truth-tables.
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Second-order variables also range over properties, sets, relations or functions [Shapiro]
     Full Idea: Second-order variables can range over properties, sets, or relations on the items in the domain-of-discourse, or over functions from the domain itself.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Downward Löwenheim-Skolem: if there's an infinite model, there is a countable model [Shapiro]
     Full Idea: Downward Löwenheim-Skolem: a finite or denumerable set of first-order formulas that is satisfied by a model whose domain is infinite is satisfied in a model whose domain is the natural numbers
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
Up Löwenheim-Skolem: if natural numbers satisfy wffs, then an infinite domain satisfies them [Shapiro]
     Full Idea: Upward Löwenheim-Skolem: if a set of first-order formulas is satisfied by a domain of at least the natural numbers, then it is satisfied by a model of at least some infinite cardinal.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
The Löwenheim-Skolem Theorems fail for second-order languages with standard semantics [Shapiro]
     Full Idea: Both of the Löwenheim-Skolem Theorems fail for second-order languages with a standard semantics
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.3.2)
The Löwenheim-Skolem theorem seems to be a defect of first-order logic [Shapiro]
     Full Idea: The Löwenheim-Skolem theorem is usually taken as a sort of defect (often thought to be inevitable) of the first-order logic.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
     A reaction: [He is quoting Wang 1974 p.154]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematical truth is always compromising between ordinary language and sensible epistemology [Benacerraf]
     Full Idea: Most accounts of the concept of mathematical truth can be identified with serving one or another of either semantic theory (matching it to ordinary language), or with epistemology (meshing with a reasonable view) - always at the expense of the other.
     From: Paul Benacerraf (Mathematical Truth [1973], Intro)
     A reaction: The gist is that language pulls you towards platonism, and epistemology pulls you towards empiricism. He argues that the semantics must give ground. He's right.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Second-order logic has the expressive power for mathematics, but an unworkable model theory [Shapiro]
     Full Idea: Full second-order logic has all the expressive power needed to do mathematics, but has an unworkable model theory.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
     A reaction: [he credits Cowles for this remark] Having an unworkable model theory sounds pretty serious to me, as I'm not inclined to be interested in languages which don't produce models of some sort. Surely models are the whole point?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
If Hume's Principle can define numbers, we needn't worry about its truth [Fine,K]
     Full Idea: Neo-Fregeans have thought that Hume's Principle, and the like, might be definitive of number and therefore not subject to the usual epistemological worries over its truth.
     From: Kit Fine (Precis of 'Limits of Abstraction' [2005], p.310)
     A reaction: This seems to be the underlying dream of logicism - that arithmetic is actually brought into existence by definitions, rather than by truths derived from elsewhere. But we must be able to count physical objects, as well as just counting numbers.
Hume's Principle is either adequate for number but fails to define properly, or vice versa [Fine,K]
     Full Idea: The fundamental difficulty facing the neo-Fregean is to either adopt the predicative reading of Hume's Principle, defining numbers, but inadequate, or the impredicative reading, which is adequate, but not really a definition.
     From: Kit Fine (Precis of 'Limits of Abstraction' [2005], p.312)
     A reaction: I'm not sure I understand this, but the general drift is the difficulty of building a system which has been brought into existence just by definition.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Realists have semantics without epistemology, anti-realists epistemology but bad semantics [Benacerraf, by Colyvan]
     Full Idea: Benacerraf argues that realists about mathematical objects have a nice normal semantic but no epistemology, and anti-realists have a good epistemology but an unorthodox semantics.
     From: report of Paul Benacerraf (Mathematical Truth [1973]) by Mark Colyvan - Introduction to the Philosophy of Mathematics 1.2
The platonist view of mathematics doesn't fit our epistemology very well [Benacerraf]
     Full Idea: The principle defect of the standard (platonist) account of mathematical truth is that it appears to violate the requirement that our account be susceptible to integration into our over-all account of knowledge.
     From: Paul Benacerraf (Mathematical Truth [1973], III)
     A reaction: Unfortunately he goes on to defend a causal theory of justification (fashionable at that time, but implausible now). Nevertheless, his general point is well made. Your theory of what mathematics is had better make it knowable.
8. Modes of Existence / B. Properties / 11. Properties as Sets
Logicians use 'property' and 'set' interchangeably, with little hanging on it [Shapiro]
     Full Idea: In studying second-order logic one can think of relations and functions as extensional or intensional, or one can leave it open. Little turns on this here, and so words like 'property', 'class', and 'set' are used interchangeably.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.2.1)
     A reaction: Important. Students of the metaphysics of properties, who arrive with limited experience of logic, are bewildered by this attitude. Note that the metaphysics is left wide open, so never let logicians hijack the metaphysical problem of properties.
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
An abstraction principle should not 'inflate', producing more abstractions than objects [Fine,K]
     Full Idea: If an abstraction principle is going to be acceptable, then it should not 'inflate', i.e. it should not result in there being more abstracts than there are objects. By this mark Hume's Principle will be acceptable, but Frege's Law V will not.
     From: Kit Fine (Precis of 'Limits of Abstraction' [2005], p.307)
     A reaction: I take this to be motivated by my own intuition that abstract concepts had better be rooted in the world, or they are not worth the paper they are written on. The underlying idea this sort of abstraction is that it is 'shared' between objects.