Combining Texts

All the ideas for 'In Defence of Three-Dimensionalism', 'Naturalism in Mathematics' and 'Ambitious, yet modest, Metaphysics'

unexpand these ideas     |    start again     |     specify just one area for these texts


34 ideas

1. Philosophy / E. Nature of Metaphysics / 5. Metaphysics beyond Science
Esoteric metaphysics aims to be top science, investigating ultimate reality [Hofweber]
     Full Idea: Esoteric metaphysics appeals to those, I conjecture, who deep down hold that philosophy is the queen of sciences after all, since it investigates what the world is REALLY like.
     From: Thomas Hofweber (Ambitious, yet modest, Metaphysics [2009], 2)
     A reaction: He mentions Kit Fine and Jonathan Schaffer as esoteric metaphysicians. I see a pyramid of increasing generality and abstraction, with metaphysics at the top. This doesn't make it 'queen', though, because uncertainties multiply higher up.
1. Philosophy / E. Nature of Metaphysics / 7. Against Metaphysics
Science has discovered properties of things, so there are properties - so who needs metaphysics? [Hofweber]
     Full Idea: Material science has found that some features of metals make them more susceptible to corrosion but more resistant to fracture. Thus this immediately implies that there are features, i.e. properties. What is left for metaphysics to do?
     From: Thomas Hofweber (Ambitious, yet modest, Metaphysics [2009], 1.1)
     A reaction: Presumably economists have discovered 'features' of economies that cause unemployment, and literary critics have discovered 'features' of novels that make them good.
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
'Forcing' can produce new models of ZFC from old models [Maddy]
     Full Idea: Cohen's method of 'forcing' produces a new model of ZFC from an old model by appending a carefully chosen 'generic' set.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
A Large Cardinal Axiom would assert ever-increasing stages in the hierarchy [Maddy]
     Full Idea: A possible axiom is the Large Cardinal Axiom, which asserts that there are more and more stages in the cumulative hierarchy. Infinity can be seen as the first of these stages, and Replacement pushes further in this direction.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Axiom of Infinity: completed infinite collections can be treated mathematically [Maddy]
     Full Idea: The axiom of infinity: that there are infinite sets is to claim that completed infinite collections can be treated mathematically. In its standard contemporary form, the axioms assert the existence of the set of all finite ordinals.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.3)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
The Axiom of Foundation says every set exists at a level in the set hierarchy [Maddy]
     Full Idea: In the presence of other axioms, the Axiom of Foundation is equivalent to the claim that every set is a member of some Vα.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.3)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Axiom of Reducibility: propositional functions are extensionally predicative [Maddy]
     Full Idea: The Axiom of Reducibility states that every propositional function is extensionally equivalent to some predicative proposition function.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
'Propositional functions' are propositions with a variable as subject or predicate [Maddy]
     Full Idea: A 'propositional function' is generated when one of the terms of the proposition is replaced by a variable, as in 'x is wise' or 'Socrates'.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: This implies that you can only have a propositional function if it is derived from a complete proposition. Note that the variable can be in either subject or in predicate position. It extends Frege's account of a concept as 'x is F'.
5. Theory of Logic / G. Quantification / 1. Quantification
The quantifier in logic is not like the ordinary English one (which has empty names, non-denoting terms etc) [Hofweber]
     Full Idea: The inferential role of the existential quantifier in first order logic does not carry over to the existential quantifier in English (we have empty names, singular terms that are not even in the business of denoting, and so on).
     From: Thomas Hofweber (Ambitious, yet modest, Metaphysics [2009], 2)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Completed infinities resulted from giving foundations to calculus [Maddy]
     Full Idea: The line of development that finally led to a coherent foundation for the calculus also led to the explicit introduction of completed infinities: each real number is identified with an infinite collection of rationals.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.3)
     A reaction: Effectively, completed infinities just are the real numbers.
Cantor and Dedekind brought completed infinities into mathematics [Maddy]
     Full Idea: Both Cantor's real number (Cauchy sequences of rationals) and Dedekind's cuts involved regarding infinite items (sequences or sets) as completed and subject to further manipulation, bringing the completed infinite into mathematics unambiguously.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1 n39)
     A reaction: So it is the arrival of the real numbers which is the culprit for lumbering us with weird completed infinites, which can then be the subject of addition, multiplication and exponentiation. Maybe this was a silly mistake?
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Infinity has degrees, and large cardinals are the heart of set theory [Maddy]
     Full Idea: The stunning discovery that infinity comes in different degrees led to the theory of infinite cardinal numbers, the heart of contemporary set theory.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: It occurs to me that these huge cardinals only exist in set theory. If you took away that prop, they would vanish in a puff.
For any cardinal there is always a larger one (so there is no set of all sets) [Maddy]
     Full Idea: By the mid 1890s Cantor was aware that there could be no set of all sets, as its cardinal number would have to be the largest cardinal number, while his own theorem shows that for any cardinal there is a larger.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: There is always a larger cardinal because of the power set axiom. Some people regard that with suspicion.
An 'inaccessible' cardinal cannot be reached by union sets or power sets [Maddy]
     Full Idea: An 'inaccessible' cardinal is one that cannot be reached by taking unions of small collections of smaller sets or by taking power sets.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.5)
     A reaction: They were introduced by Hausdorff in 1908.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / l. Limits
Theorems about limits could only be proved once the real numbers were understood [Maddy]
     Full Idea: Even the fundamental theorems about limits could not [at first] be proved because the reals themselves were not well understood.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: This refers to the period of about 1850 (Weierstrass) to 1880 (Dedekind and Cantor).
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
The extension of concepts is not important to me [Maddy]
     Full Idea: I attach no decisive importance even to bringing in the extension of the concepts at all.
     From: Penelope Maddy (Naturalism in Mathematics [1997], §107)
     A reaction: He almost seems to equate the concept with its extension, but that seems to raise all sorts of questions, about indeterminate and fluctuating extensions.
In the ZFC hierarchy it is impossible to form Frege's set of all three-element sets [Maddy]
     Full Idea: In the ZFC cumulative hierarchy, Frege's candidates for numbers do not exist. For example, new three-element sets are formed at every stage, so there is no stage at which the set of all three-element sets could he formed.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: Ah. This is a very important fact indeed if you are trying to understand contemporary discussions in philosophy of mathematics.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Frege solves the Caesar problem by explicitly defining each number [Maddy]
     Full Idea: To solve the Julius Caesar problem, Frege requires explicit definitions of the numbers, and he proposes his well-known solution: the number of Fs = the extension of the concept 'equinumerous with F' (based on one-one correspondence).
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: Why do there have to be Fs before there can be the corresponding number? If there were no F for 523, would that mean that '523' didn't exist (even if 522 and 524 did exist)?
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Making set theory foundational to mathematics leads to very fruitful axioms [Maddy]
     Full Idea: The set theory axioms developed in producing foundations for mathematics also have strong consequences for existing fields, and produce a theory that is immensely fruitful in its own right.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: [compressed] Second of Maddy's three benefits of set theory. This benefit is more questionable than the first, because the axioms may be invented because of their nice fruit, instead of their accurate account of foundations.
Unified set theory gives a final court of appeal for mathematics [Maddy]
     Full Idea: The single unified area of set theory provides a court of final appeal for questions of mathematical existence and proof.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: Maddy's third benefit of set theory. 'Existence' means being modellable in sets, and 'proof' means being derivable from the axioms. The slightly ad hoc character of the axioms makes this a weaker defence.
Set theory brings mathematics into one arena, where interrelations become clearer [Maddy]
     Full Idea: Set theoretic foundations bring all mathematical objects and structures into one arena, allowing relations and interactions between them to be clearly displayed and investigated.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: The first of three benefits of set theory which Maddy lists. The advantages of the one arena seem to be indisputable.
Identifying geometric points with real numbers revealed the power of set theory [Maddy]
     Full Idea: The identification of geometric points with real numbers was among the first and most dramatic examples of the power of set theoretic foundations.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: Hence the clear definition of the reals by Dedekind and Cantor was the real trigger for launching set theory.
The line of rationals has gaps, but set theory provided an ordered continuum [Maddy]
     Full Idea: The structure of a geometric line by rational points left gaps, which were inconsistent with a continuous line. Set theory provided an ordering that contained no gaps. These reals are constructed from rationals, which come from integers and naturals.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: This completes the reduction of geometry to arithmetic and algebra, which was launch 250 years earlier by Descartes.
Mathematics rests on the logic of proofs, and on the set theoretic axioms [Maddy]
     Full Idea: Our much loved mathematical knowledge rests on two supports: inexorable deductive logic (the stuff of proof), and the set theoretic axioms.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I Intro)
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Maybe applications of continuum mathematics are all idealisations [Maddy]
     Full Idea: It could turn out that all applications of continuum mathematics in natural sciences are actually instances of idealisation.
     From: Penelope Maddy (Naturalism in Mathematics [1997], II.6)
Scientists posit as few entities as possible, but set theorist posit as many as possible [Maddy]
     Full Idea: Crudely, the scientist posits only those entities without which she cannot account for observations, while the set theorist posits as many entities as she can, short of inconsistency.
     From: Penelope Maddy (Naturalism in Mathematics [1997], II.5)
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
We can get arithmetic directly from HP; Law V was used to get HP from the definition of number [Maddy]
     Full Idea: Recent commentators have noted that Frege's versions of the basic propositions of arithmetic can be derived from Hume's Principle alone, that the fatal Law V is only needed to derive Hume's Principle itself from the definition of number.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: Crispin Wright is the famous exponent of this modern view. Apparently Charles Parsons (1965) first floated the idea.
7. Existence / D. Theories of Reality / 11. Ontological Commitment / e. Ontological commitment problems
The theoretical indispensability of atoms did not at first convince scientists that they were real [Maddy]
     Full Idea: The case of atoms makes it clear that the indispensable appearance of an entity in our best scientific theory is not generally enough to convince scientists that it is real.
     From: Penelope Maddy (Naturalism in Mathematics [1997], II.6)
     A reaction: She refers to the period between Dalton and Einstein, when theories were full of atoms, but there was strong reluctance to actually say that they existed, until the direct evidence was incontrovertable. Nice point.
9. Objects / E. Objects over Time / 3. Three-Dimensionalism
3-D says things are stretched in space but not in time, and entire at a time but not at a location [Fine,K]
     Full Idea: Three-dimensionalist think a thing is somehow 'stretched out' through its location at a given time though not through the period during which it exists, and it is present in its entirety at a moment when it exists though not at a position of its location.
     From: Kit Fine (In Defence of Three-Dimensionalism [2006], p.1)
     A reaction: This definition is designed to set up Fine's defence of the 3-D view, by showing that various dubious asymmetries show up if you do not respect the distinctions offered by the 3-D view.
Genuine motion, rather than variation of position, requires the 'entire presence' of the object [Fine,K]
     Full Idea: In order to have genuine motion, rather than mere variation in position, it is necessary that the object should be 'entirely present' at each moment of the change. Thus without entire presence, or existence, genuine motion will not be possible.
     From: Kit Fine (In Defence of Three-Dimensionalism [2006], p.6)
     A reaction: See Idea 4786 for a rival view of motion. Of course, who says we have to have Kit Fine's 'genuine' motion, if some sort of ersatz motion still gets you to work in the morning?
9. Objects / E. Objects over Time / 4. Four-Dimensionalism
4-D says things are stretched in space and in time, and not entire at a time or at a location [Fine,K]
     Full Idea: Four-dimensionalists have thought that a material thing is as equally 'stretched out' in time as it is in space, and that there is no special way in which it is entirely present at a moment rather than at a position.
     From: Kit Fine (In Defence of Three-Dimensionalism [2006], p.1)
     A reaction: Compare his definition of 3-D in Idea 12295. The 4-D is contrary to our normal way of thinking. Since I don't think the future exists, I presume that if I am a 4-D object then I have to say that I don't yet exist, and I disapprove of such talk.
You can ask when the wedding was, but not (usually) when the bride was [Fine,K, by Simons]
     Full Idea: Fine says it is acceptable to ask when a wedding was and where it was, and it is acceptable to ask or state where the bride was (at a certain time), but not when she was.
     From: report of Kit Fine (In Defence of Three-Dimensionalism [2006], p.18) by Peter Simons - Modes of Extension: comment on Fine p.18
     A reaction: This is aimed at three-dimensionalists who seem to think that a bride is a prolonged event, just as a wedding is. Fine is, interestingly, invoking ordinary language. When did the wedding start and end? When was the bride's birth and death?
9. Objects / E. Objects over Time / 5. Temporal Parts
Three-dimensionalist can accept temporal parts, as things enduring only for an instant [Fine,K]
     Full Idea: Even if one is a three-dimensionalist, one might affirm the existence of temporal parts, on the grounds that everything merely endures for an instant.
     From: Kit Fine (In Defence of Three-Dimensionalism [2006], p.2)
     A reaction: This seems an important point, as belief in temporal parts is normally equated with four-dimensionalism (see Idea 12296). The idea is that a thing might be 'entirely present' at each instant, only to be replaced by a simulacrum.
15. Nature of Minds / C. Capacities of Minds / 6. Idealisation
Science idealises the earth's surface, the oceans, continuities, and liquids [Maddy]
     Full Idea: In science we treat the earth's surface as flat, we assume the ocean to be infinitely deep, we use continuous functions for what we know to be quantised, and we take liquids to be continuous despite atomic theory.
     From: Penelope Maddy (Naturalism in Mathematics [1997], II.6)
     A reaction: If fussy people like scientists do this all the time, how much more so must the confused multitude be doing the same thing all day?