Combining Texts

All the ideas for 'fragments/reports', 'The Laws of Thought' and 'Treatise on Quantity'

unexpand these ideas     |    start again     |     specify just one area for these texts


6 ideas

4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Boole applied normal algebra to logic, aiming at an algebra of thought [Boole, by Devlin]
     Full Idea: Boole proposed to use the entire apparatus of a school algebra class, with operations such as addition and multiplication, methods to solve equations, and the like, to produce an algebra of thought.
     From: report of George Boole (The Laws of Thought [1854]) by Keith Devlin - Goodbye Descartes Ch.3
     A reaction: The Stoics didn’t use any algebraic notation for their study of propositions, so Boole's idea launched full blown propositional logic, and the rest of modern logic followed. Nice one.
Boole's notation can represent syllogisms and propositional arguments, but not both at once [Boole, by Weiner]
     Full Idea: Boole introduced a new symbolic notation in which it was possible to represent both syllogisms and propositional arguments, ...but not both at once.
     From: report of George Boole (The Laws of Thought [1854], Ch.3) by Joan Weiner - Frege
     A reaction: How important is the development of symbolic notations for the advancement of civilisations? Is there a perfect notation, as used in logical heaven?
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
Boole made logic more mathematical, with algebra, quantifiers and probability [Boole, by Friend]
     Full Idea: Boole (followed by Frege) began to turn logic from a branch of philosophy into a branch of mathematics. He brought an algebraic approach to propositions, and introduced the notion of a quantifier and a type of probabilistic reasoning.
     From: report of George Boole (The Laws of Thought [1854], 3.2) by Michèle Friend - Introducing the Philosophy of Mathematics
     A reaction: The result was that logic not only became more mathematical, but also more specialised. We now have two types of philosopher, those steeped in mathematical logic and the rest. They don't always sing from the same songsheet.
5. Theory of Logic / H. Proof Systems / 2. Axiomatic Proof
Boole's method was axiomatic, achieving economy, plus multiple interpretations [Boole, by Potter]
     Full Idea: Boole's work was an early example of the axiomatic method, whereby intellectual economy is achieved by studying a set of axioms in which the primitive terms have multiple interpretations.
     From: report of George Boole (The Laws of Thought [1854]) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 02 'Boole'
     A reaction: Unclear about this. I suppose the axioms are just syntactic, and a range of semantic interpretations can be applied. Are De Morgan's Laws interpretations, or implications of the syntactic axioms? The latter, I think.
9. Objects / C. Structure of Objects / 4. Quantity of an Object
Quantity is the quantified parts of a thing, plus location and coordination [Olivi]
     Full Idea: Quantity refers to nothing other than the parts of the thing quantified, together with their location or position, being extrinsically coordinated with each other.
     From: Peter John Olivi (Treatise on Quantity [1286], f. 49vb), quoted by Robert Pasnau - Metaphysical Themes 1274-1671 14.1
     A reaction: I'm not sure I understand 'extrinsically'. Is there some external stretching force? God spends his time spreading out his stuff? It is nice that being spread out isn't taken for granted. We take much more for granted than they did. Motion, for example.
10. Modality / A. Necessity / 8. Transcendental Necessity
Everything happens by reason and necessity [Leucippus]
     Full Idea: Nothing happens at random; everything happens out of reason and by necessity.
     From: Leucippus (fragments/reports [c.435 BCE], B002), quoted by (who?) - where?