Combining Texts

All the ideas for 'fragments/reports', 'Modal Logic' and 'Remarks on axiomatised set theory'

unexpand these ideas     |    start again     |     specify just one area for these texts


12 ideas

4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / b. System K
Normal system K has five axioms and rules [Cresswell]
     Full Idea: Normal propositional modal logics derive from the minimal system K: wffs of PC are axioms; □(p⊃q)⊃(□p⊃□q); uniform substitution; modus ponens; necessitation (α→□α).
     From: Max J. Cresswell (Modal Logic [2001], 7.1)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / c. System D
D is valid on every serial frame, but not where there are dead ends [Cresswell]
     Full Idea: If a frame contains any dead end or blind world, then D is not valid on that frame, ...but D is valid on every serial frame.
     From: Max J. Cresswell (Modal Logic [2001], 7.1.1)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / g. System S4
S4 has 14 modalities, and always reduces to a maximum of three modal operators [Cresswell]
     Full Idea: In S4 there are exactly 14 distinct modalities, and any modality may be reduced to one containing no more than three modal operators in sequence.
     From: Max J. Cresswell (Modal Logic [2001], 7.1.2)
     A reaction: The significance of this may be unclear, but it illustrates one of the rewards of using formal systems to think about modal problems. There is at least an appearance of precision, even if it is only conditional precision.
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
In S5 all the long complex modalities reduce to just three, and their negations [Cresswell]
     Full Idea: S5 contains the four main reduction laws, so the first of any pair of operators may be deleted. Hence all but the last modal operator may be deleted. This leaves six modalities: p, ◊p, □p, and their negations.
     From: Max J. Cresswell (Modal Logic [2001], 7.1.2)
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
Reject the Barcan if quantifiers are confined to worlds, and different things exist in other worlds [Cresswell]
     Full Idea: If one wants the quantifiers in each world to range only over the things that exist in that world, and one doesn't believe that the same things exist in every world, one would probably not want the Barcan formula.
     From: Max J. Cresswell (Modal Logic [2001], 7.2.2)
     A reaction: I haven't quite got this, but it sounds to me like I should reject the Barcan formula (but Idea 9449!). I like a metaphysics to rest on the actual world (with modal properties). I assume different things could have existed, but don't.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Axiomatising set theory makes it all relative [Skolem]
     Full Idea: Axiomatising set theory leads to a relativity of set-theoretic notions, and this relativity is inseparably bound up with every thoroughgoing axiomatisation.
     From: Thoralf Skolem (Remarks on axiomatised set theory [1922], p.296)
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
If a 1st-order proposition is satisfied, it is satisfied in a denumerably infinite domain [Skolem]
     Full Idea: Löwenheim's theorem reads as follows: If a first-order proposition is satisfied in any domain at all, it is already satisfied in a denumerably infinite domain.
     From: Thoralf Skolem (Remarks on axiomatised set theory [1922], p.293)
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Integers and induction are clear as foundations, but set-theory axioms certainly aren't [Skolem]
     Full Idea: The initial foundations should be immediately clear, natural and not open to question. This is satisfied by the notion of integer and by inductive inference, by it is not satisfied by the axioms of Zermelo, or anything else of that kind.
     From: Thoralf Skolem (Remarks on axiomatised set theory [1922], p.299)
     A reaction: This is a plea (endorsed by Almog) that the integers themselves should be taken as primitive and foundational. I would say that the idea of successor is more primitive than the integers.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Mathematician want performable operations, not propositions about objects [Skolem]
     Full Idea: Most mathematicians want mathematics to deal, ultimately, with performable computing operations, and not to consist of formal propositions about objects called this or that.
     From: Thoralf Skolem (Remarks on axiomatised set theory [1922], p.300)
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
A relation is 'Euclidean' if aRb and aRc imply bRc [Cresswell]
     Full Idea: A relation is 'Euclidean' if aRb and aRc imply bRc.
     From: Max J. Cresswell (Modal Logic [2001], 7.1.2)
     A reaction: If a thing has a relation to two separate things, then those two things will also have that relation between them. If I am in the same family as Jim and as Jill, then Jim and Jill are in the same family.
10. Modality / A. Necessity / 4. De re / De dicto modality
A de dicto necessity is true in all worlds, but not necessarily of the same thing in each world [Cresswell]
     Full Idea: A de dicto necessary truth says that something is φ, that this proposition is a necessary truth, i.e. that in every accessible world something (but not necessarily the same thing in each world) is φ.
     From: Max J. Cresswell (Modal Logic [2001], 7.2.1)
     A reaction: At last, a really clear and illuminating account of this term! The question is then invited of what is the truthmaker for a de dicto truth, assuming that the objects themselves are truthmakers for de re truths.
10. Modality / A. Necessity / 8. Transcendental Necessity
Everything happens by reason and necessity [Leucippus]
     Full Idea: Nothing happens at random; everything happens out of reason and by necessity.
     From: Leucippus (fragments/reports [c.435 BCE], B002), quoted by (who?) - where?