Combining Texts

All the ideas for 'Through the Looking Glass', 'The Problem of Knowledge' and 'Particle Physics'

unexpand these ideas     |    start again     |     specify just one area for these texts


21 ideas

2. Reason / F. Fallacies / 1. Fallacy
Induction assumes some uniformity in nature, or that in some respects the future is like the past [Ayer]
     Full Idea: In all inductive reasoning we make the assumption that there is a measure of uniformity in nature; or, roughly speaking, that the future will, in the appropriate respects, resemble the past.
     From: A.J. Ayer (The Problem of Knowledge [1956], 2.viii)
     A reaction: I would say that nature is 'stable'. Nature changes, so a global assumption of total uniformity is daft. Do we need some global uniformity assumptions, if the induction involved is local? I would say yes. Are all inductions conditional on this?
7. Existence / A. Nature of Existence / 3. Being / e. Being and nothing
I only wish I had such eyes as to see Nobody! It's as much as I can do to see real people. [Carroll,L]
     Full Idea: "I see nobody on the road," said Alice. - "I only wish I had such eyes," the King remarked. ..."To be able to see Nobody! ...Why, it's as much as I can do to see real people."
     From: Lewis Carroll (C.Dodgson) (Through the Looking Glass [1886], p.189), quoted by A.W. Moore - The Evolution of Modern Metaphysics 07.7
     A reaction: [Moore quotes this, inevitably, in a chapter on Hegel] This may be a better candidate for the birth of philosophy of language than Frege's Groundwork.
11. Knowledge Aims / B. Certain Knowledge / 5. Cogito Critique
Knowing I exist reveals nothing at all about my nature [Ayer]
     Full Idea: To know that one exists is not to know anything about oneself any more than knowing that 'this' exists is knowing anything about 'this'.
     From: A.J. Ayer (The Problem of Knowledge [1956], 2.iii)
     A reaction: Descartes proceeds to define himself as a 'thinking thing', inferring that thinking is his essence. Ayer casts nice doubt on that.
To say 'I am not thinking' must be false, but it might have been true, so it isn't self-contradictory [Ayer]
     Full Idea: To say 'I am not thinking' is self-stultifying since if it is said intelligently it must be false: but it is not self-contradictory. The proof that it is not self-contradictory is that it might have been false.
     From: A.J. Ayer (The Problem of Knowledge [1956], 2.iii)
     A reaction: If it doesn't imply a contradiction, then it is not a necessary truth, which is what it is normally taken to be. Is 'This is a sentence' necessarily true? It might not have been one, if the rules of English syntax changed recently.
'I know I exist' has no counterevidence, so it may be meaningless [Ayer]
     Full Idea: If there is no experience at all of finding out that one is not conscious, or that one does not exist, ..it is tempting to say that sentences like 'I exist', 'I am conscious', 'I know that I exist' do not express genuine propositions.
     From: A.J. Ayer (The Problem of Knowledge [1956], 2.iii)
     A reaction: This is, of course, an application of the somewhat discredited verification principle, but the fact that strictly speaking the principle has been sort of refuted does not mean that we should not take it seriously, and be influenced by it.
14. Science / A. Basis of Science / 6. Falsification
We only discard a hypothesis after one failure if it appears likely to keep on failing [Ayer]
     Full Idea: Why should a hypothesis which has failed the test be discarded unless this shows it to be unreliable; that is, having failed once it is likely to fail again? There is no contradiction in a hypothesis that was falsified being more likely to pass in future.
     From: A.J. Ayer (The Problem of Knowledge [1956], 2.viii)
     A reaction: People may become more likely to pass a test after they have failed at the first attempt. Birds which fail to fly at the first attempt usually achieve total mastery of it. There are different types of hypothesis here.
14. Science / C. Induction / 2. Aims of Induction
Induction passes from particular facts to other particulars, or to general laws, non-deductively [Ayer]
     Full Idea: Inductive reasoning covers all cases in which we pass from a particular statement of fact, or set of them, to a factual conclusion which they do not formally entail. The inference may be to a general law, or by analogy to another particular instance.
     From: A.J. Ayer (The Problem of Knowledge [1956], 2.viii)
     A reaction: My preferred definition is 'learning from experience' - which I take to be the most rational behaviour you could possibly imagine. I don't think a definition should be couched in terms of 'objects' or 'particulars'.
27. Natural Reality / A. Classical Physics / 1. Mechanics / c. Forces
The strong force has a considerably greater range than the weak force [Martin,BR]
     Full Idea: The strong nuclear force has a range of 10^-15 m, considerably larger than the range of the weak force.
     From: Brian R. Martin (Particle Physics [2011], 01)
     A reaction: This is because the bosons transmitting the weak force (W+, W-, W°) are much heavier than the gluons of the strong force.
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / c. Conservation of energy
If an expected reaction does not occur, that implies a conservation law [Martin,BR]
     Full Idea: If some reaction is not observed when there is apparently nothing to prevent it occurring, it is an indication that a conservation law is in operation.
     From: Brian R. Martin (Particle Physics [2011], 07)
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / a. Electrodynamics
Electron emit and reabsorb photons, which create and reabsorb virtual electrons and positrons [Martin,BR]
     Full Idea: In QED an electron constantly emits and reabsorbs virtual photons and these photons constantly create and reabsorb pairs of virtual electrons and positrons, and so on.
     From: Brian R. Martin (Particle Physics [2011], 06)
     A reaction: 'And so on'! These virtual particles have energy, and hence mass.
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / b. Fields
A 'field' is just a region to which points can be assigned in space and time [Martin,BR]
     Full Idea: The word 'field' is simply a shorthand way of saying that a physical property is assigned to the points of space and time in a region.
     From: Brian R. Martin (Particle Physics [2011], 01)
     A reaction: This is disappointing because I had begun to think that fields were foundational for modern ontology. Turns out they are operational abstractions (according to Martin). Note that a field extends over time.
The Higgs field, unlike others, has a nozero value in a state without particles [Martin,BR]
     Full Idea: The Higgs field has the property of having a nonzero value in a state without particles, the vacuum state. Other fields are assumed to have a value zero in a vacuum state.
     From: Brian R. Martin (Particle Physics [2011], 09)
     A reaction: This seems to make a big difference to our concept of a field, since it has a measurable reality even when there are no particles. So it isn't just a geometrical frame for locating particles.
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / c. Electrons
Many physicists believe particles have further structure, if only we could see it [Martin,BR]
     Full Idea: Although standard particles are assumed to be structureless, many physicists believe that if distances could be probed down to 10^-35 m structures would be discovered.
     From: Brian R. Martin (Particle Physics [2011], 01)
     A reaction: Such probing is said to be probably impossible. And does the division then come to a halt? Aristotle's meditations on this are not irrelevant.
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / d. Quantum mechanics
Uncertainty allows very brief violations of energy conservation - even shorter with higher energies [Martin,BR]
     Full Idea: The uncertainty principle states that energy conservation can be violated, but only for a limited period of time. As the energy violation increases, the time period within which 'borrowed' energy has to be 'paid back' decreases.
     From: Brian R. Martin (Particle Physics [2011], 01)
     A reaction: This is the only reason modern physicists ever seem to mention the uncertainty principle. You can ask why this debt must be paid, but it seems to be hidden where the laws of physics may not even apply.
The Exclusion Principle says no two fermions occupy the same state, with the same numbers [Martin,BR]
     Full Idea: The 'exclusion principle' initially stated that no two electrons in a system could simultaneously occupy the same quantum state and thus have the same set of quantum numbers. The principle actually applies to all fermions, but not to bosons.
     From: Brian R. Martin (Particle Physics [2011], 02)
     A reaction: This principle is said to be at the root of atomic structure, making each element unique. What exactly is a 'system'? Why does this principle hold? How do you ensure two women don't wear the same dress at a party?
27. Natural Reality / B. Modern Physics / 4. Standard Model / b. Standard model
The standard model combines theories of strong interaction, and electromagnetic and weak interaction [Martin,BR]
     Full Idea: As presently formulated, the standard model is two theories. One operates in the sector of strong interaction, and the other in the sector of the electromagnetic and weak interactions.
     From: Brian R. Martin (Particle Physics [2011], 01)
     A reaction: The first is Quantum Chomodynamics (QCD). The second is Quantum Electrodynamics (QED). Interesting that the weak interaction is included in the latter, which (I take it) means there is an electro-weak union. Interactions are the heart of the model.
27. Natural Reality / B. Modern Physics / 4. Standard Model / c. Particle properties
Eletrons don't literally 'spin', because they are point-like [Martin,BR]
     Full Idea: The picture of a particle spinning like a top is sometime useful, but it is not consistent with the idea of the electron being point-like. In fact there is no analogy for spin in non-quantum physics.
     From: Brian R. Martin (Particle Physics [2011], 02)
     A reaction: If we take this stuff literally then it blow traditional metaphysics to bits, because an electron has properties without being a substance. In what sense can an electron 'have' properties if it is a point? In interactions they cease to be points. Eh?
Virtual particles surround any charged particle [Martin,BR]
     Full Idea: A cloud of virtual particles always surrounds a charged particle.
     From: Brian R. Martin (Particle Physics [2011], 06)
     A reaction: Here's a nice fact for aspiring Buddhists to meditate on.
The properties of a particle are determined by its quantum numbers and its mass [Martin,BR]
     Full Idea: In quantum theory, the full set of quantum numbers defines the state of the particle and, along with its mass, determines its properties.
     From: Brian R. Martin (Particle Physics [2011], 02)
27. Natural Reality / B. Modern Physics / 5. Unified Models / b. String theory
String theory only has one free parameter (tension) - unlike the standard model with 19 [Martin,BR]
     Full Idea: Unlike the standard model, with its 19 free parameters (including the masses of quarks, coupling constants and mixing angles), string theories have a single free paramater: the string tension.
     From: Brian R. Martin (Particle Physics [2011], 10)
     A reaction: This must be one feature in favour of string theory, despite its problems.
27. Natural Reality / F. Chemistry / 2. Modern Elements
An 'element' is what cannot be decomposed by chemistry [Martin,BR]
     Full Idea: In the modern sense 'element' means a substance that cannot be decomposed by the methods of chemistry.
     From: Brian R. Martin (Particle Physics [2011], 01)