Combining Texts

All the ideas for 'Individuals without Sortals', 'Letters to Foucher' and 'Alfred Tarski: life and logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


29 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Cantor's theories needed the Axiom of Choice, but it has led to great controversy [Feferman/Feferman]
     Full Idea: The Axiom of Choice is a pure existence statement, without defining conditions. It was necessary to provide a foundation for Cantor's theory of transfinite cardinals and ordinal numbers, but its nonconstructive character engendered heated controversy.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
The Axiom of Choice is consistent with the other axioms of set theory [Feferman/Feferman]
     Full Idea: In 1938 Gödel proved that the Axiom of Choice is consistent with the other axioms of set theory.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
     A reaction: Hence people now standardly accept ZFC, rather than just ZF.
The Trichotomy Principle is equivalent to the Axiom of Choice [Feferman/Feferman]
     Full Idea: The Trichotomy Principle (any number is less, equal to, or greater than, another number) turned out to be equivalent to the Axiom of Choice.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
     A reaction: [He credits Sierpinski (1918) with this discovery]
Axiom of Choice: a set exists which chooses just one element each of any set of sets [Feferman/Feferman]
     Full Idea: Zermelo's Axiom of Choice asserts that for any set of non-empty sets that (pairwise) have no elements in common, then there is a set that 'simultaneously chooses' exactly one element from each set. Note that this is an existential claim.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
     A reaction: The Axiom is now widely accepted, after much debate in the early years. Even critics of the Axiom turn out to be relying on it.
Platonist will accept the Axiom of Choice, but others want criteria of selection or definition [Feferman/Feferman]
     Full Idea: The Axiom of Choice seems clearly true from the Platonistic point of view, independently of how sets may be defined, but is rejected by those who think such existential claims must show how to pick out or define the object claimed to exist.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
     A reaction: The typical critics are likely to be intuitionists or formalists, who seek for both rigour and a plausible epistemology in our theory.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A structure is a 'model' when the axioms are true. So which of the structures are models? [Feferman/Feferman]
     Full Idea: A structure is said to be a 'model' of an axiom system if each of its axioms is true in the structure (e.g. Euclidean or non-Euclidean geometry). 'Model theory' concerns which structures are models of a given language and axiom system.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
     A reaction: This strikes me as the most interesting aspect of mathematical logic, since it concerns the ways in which syntactic proof-systems actually connect with reality. Tarski is the central theoretician here, and his theory of truth is the key.
Tarski and Vaught established the equivalence relations between first-order structures [Feferman/Feferman]
     Full Idea: In the late 1950s Tarski and Vaught defined and established basic properties of the relation of elementary equivalence between two structures, which holds when they make true exactly the same first-order sentences. This is fundamental to model theory.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
     A reaction: This is isomorphism, which clarifies what a model is by giving identity conditions between two models. Note that it is 'first-order', and presumably founded on classical logic.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Löwenheim-Skolem says if the sentences are countable, so is the model [Feferman/Feferman]
     Full Idea: The Löwenheim-Skolem Theorem, the earliest in model theory, states that if a countable set of sentences in a first-order language has a model, then it has a countable model.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
     A reaction: There are 'upward' (sentences-to-model) and 'downward' (model-to-sentences) versions of the theory.
Löwenheim-Skolem Theorem, and Gödel's completeness of first-order logic, the earliest model theory [Feferman/Feferman]
     Full Idea: Before Tarski's work in the 1930s, the main results in model theory were the Löwenheim-Skolem Theorem, and Gödel's establishment in 1929 of the completeness of the axioms and rules for the classical first-order predicate (or quantificational) calculus.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
5. Theory of Logic / K. Features of Logics / 4. Completeness
If a sentence holds in every model of a theory, then it is logically derivable from the theory [Feferman/Feferman]
     Full Idea: Completeness is when, if a sentences holds in every model of a theory, then it is logically derivable from that theory.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
5. Theory of Logic / K. Features of Logics / 7. Decidability
'Recursion theory' concerns what can be solved by computing machines [Feferman/Feferman]
     Full Idea: 'Recursion theory' is the subject of what can and cannot be solved by computing machines
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Ch.9)
     A reaction: This because 'recursion' will grind out a result step-by-step, as long as the steps will 'halt' eventually.
Both Principia Mathematica and Peano Arithmetic are undecidable [Feferman/Feferman]
     Full Idea: In 1936 Church showed that Principia Mathematica is undecidable if it is ω-consistent, and a year later Rosser showed that Peano Arithmetic is undecidable, and any consistent extension of it.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int IV)
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / d. Counting via concepts
Counting 'coin in this box' may have coin as the unit, with 'in this box' merely as the scope [Ayers]
     Full Idea: If we count the concept 'coin in this box', we could regard coin as the 'unit', while taking 'in this box' to limit the scope. Counting coins in two boxes would be not a difference in unit (kind of object), but in scope.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Counting')
     A reaction: This is a very nice alternative to the Fregean view of counting, depending totally on the concept, and rests more on a natural concept of object. I prefer Ayers. Compare 'count coins till I tell you to stop'.
If counting needs a sortal, what of things which fall under two sortals? [Ayers]
     Full Idea: If we accepted that counting objects always presupposes some sortal, it is surely clear that the class of objects to be counted could be designated by two sortals rather than one.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Realist' vii)
     A reaction: His nice example is an object which is both 'a single piece of wool' and a 'sweater', which had better not be counted twice. Wiggins struggles to argue that there is always one 'substance sortal' which predominates.
7. Existence / B. Change in Existence / 4. Events / a. Nature of events
Events do not have natural boundaries, and we have to set them [Ayers]
     Full Idea: In order to know which event has been ostensively identified by a speaker, the auditor must know the limits intended by the speaker. ...Events do not have natural boundaries.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Concl')
     A reaction: He distinguishes events thus from natural objects, where the world, to a large extent, offers us the boundaries. Nice point.
8. Modes of Existence / C. Powers and Dispositions / 4. Powers as Essence
Essence is primitive force, or a law of change [Leibniz]
     Full Idea: The essence of substances consists in the primitive force of action, or the law of the sequence of changes.
     From: Gottfried Leibniz (Letters to Foucher [1675], 1676)
     A reaction: [a 1676 note on Foucher's reply] It take these to be the two key distinctive Leibnizian contributions to the sort of metaphysic that is needed by modern science. Nature works with intrinsic essences, which are forces determining action.
9. Objects / A. Existence of Objects / 5. Individuation / a. Individuation
To express borderline cases of objects, you need the concept of an 'object' [Ayers]
     Full Idea: The only explanation of the power to produce borderline examples like 'Is this hazelnut one object or two?' is the possession of the concept of an object.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Counting')
9. Objects / A. Existence of Objects / 5. Individuation / e. Individuation by kind
Recognising continuity is separate from sortals, and must precede their use [Ayers]
     Full Idea: The recognition of the fact of continuity is logically independent of the possession of sortal concepts, whereas the formation of sortal concepts is at least psychologically dependent upon the recognition of continuity.
     From: M.R. Ayers (Individuals without Sortals [1974], Intro)
     A reaction: I take this to be entirely correct. I might add that unity must also be recognised.
Speakers need the very general category of a thing, if they are to think about it [Ayers]
     Full Idea: If a speaker indicates something, then in order for others to catch his reference they must know, at some level of generality, what kind of thing is indicated. They must categorise it as event, object, or quality. Thinking about something needs that much.
     From: M.R. Ayers (Individuals without Sortals [1974], Intro)
     A reaction: Ayers defends the view that such general categories are required, but not the much narrower sortal terms defended by Geach and Wiggins. I'm with Ayers all the way. 'What the hell is that?'
We use sortals to classify physical objects by the nature and origin of their unity [Ayers]
     Full Idea: Sortals are the terms by which we intend to classify physical objects according to the nature and origin of their unity.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Concl')
     A reaction: This is as opposed to using sortals for the initial individuation. I take the perception of the unity to come first, so resemblance must be mentioned, though it can be an underlying (essentialist) resemblance.
Seeing caterpillar and moth as the same needs continuity, not identity of sortal concepts [Ayers]
     Full Idea: It is unnecessary to call moths 'caterpillars' or caterpillars 'moths' to see that they can be the same individual. It may be that our sortal concepts reflect our beliefs about continuity, but our beliefs about continuity need not reflect our sortals.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Realist' vi)
     A reaction: Something that metamorphosed through 15 different stages could hardly required 15 different sortals before we recognised the fact. Ayers is right.
9. Objects / B. Unity of Objects / 1. Unifying an Object / a. Intrinsic unification
Could the same matter have more than one form or principle of unity? [Ayers]
     Full Idea: The abstract question arises of whether the same matter could be subject to more than one principle of unity simultaneously, or unified by more than one 'form'.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Realist' vii)
     A reaction: He suggests that the unity of the sweater is destroyed by unravelling, and the unity of the thread by cutting.
9. Objects / B. Unity of Objects / 3. Unity Problems / c. Statue and clay
If there are two objects, then 'that marble, man-shaped object' is ambiguous [Ayers]
     Full Idea: The statue is marble and man-shaped, but so is the piece of marble. So not only are the two objects in the same place, but two marble and man-shaped objects in the same place, so 'that marble, man-shaped object' must be ambiguous or indefinite.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Prob')
     A reaction: It strikes me as basic that it can't be a piece of marble if you subtract its shape, and it can't be a statue if you subtract its matter. To treat a statue as an object, separately from its matter, is absurd.
9. Objects / D. Essence of Objects / 5. Essence as Kind
Sortals basically apply to individuals [Ayers]
     Full Idea: Sortals, in their primitive use, apply to the individual.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Concl')
     A reaction: If the sortal applies to the individual, any essence must pertain to that individual, and not to the class it has been placed in.
9. Objects / E. Objects over Time / 5. Temporal Parts
You can't have the concept of a 'stage' if you lack the concept of an object [Ayers]
     Full Idea: It would be impossible for anyone to have the concept of a stage who did not already possess the concept of a physical object.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Concl')
Temporal 'parts' cannot be separated or rearranged [Ayers]
     Full Idea: Temporally extended 'parts' are still mysteriously inseparable and not subject to rearrangement: a thing cannot be cut temporally in half.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Prob')
     A reaction: A nice warning to anyone accepting a glib analogy between spatial parts and temporal parts.
9. Objects / F. Identity among Objects / 1. Concept of Identity
Some say a 'covering concept' completes identity; others place the concept in the reference [Ayers]
     Full Idea: Some hold that the 'covering concept' completes the incomplete concept of identity, determining the kind of sameness involved. Others strongly deny the identity itself is incomplete, and locate the covering concept within the necessary act of reference.
     From: M.R. Ayers (Individuals without Sortals [1974], Intro)
     A reaction: [a bit compressed; Geach is the first view, and Quine the second; Wiggins is somewhere between the two]
9. Objects / F. Identity among Objects / 3. Relative Identity
If diachronic identities need covering concepts, why not synchronic identities too? [Ayers]
     Full Idea: Why are covering concepts required for diachronic identities, when they must be supposed unnecessary for synchronic identities?
     From: M.R. Ayers (Individuals without Sortals [1974], 'Prob')
26. Natural Theory / C. Causation / 9. General Causation / d. Causal necessity
The connection in events enables us to successfully predict the future, so there must be a constant cause [Leibniz]
     Full Idea: There is a connection among our appearances that provides us the means to predict future appearances with success, and this connection must have a constant cause.
     From: Gottfried Leibniz (Letters to Foucher [1675])