Combining Texts

All the ideas for 'Individuals without Sortals', 'Certain Physical Essays' and 'Introduction to Mathematical Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


36 ideas

4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Post proved the consistency of propositional logic in 1921 [Walicki]
     Full Idea: A proof of the consistency of propositional logic was given by Emil Post in 1921.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.2.1)
Propositional language can only relate statements as the same or as different [Walicki]
     Full Idea: Propositional language is very rudimentary and has limited powers of expression. The only relation between various statements it can handle is that of identity and difference. As are all the same, but Bs can be different from As.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 7 Intro)
     A reaction: [second sentence a paraphrase] In predicate logic you could represent two statements as being the same except for one element (an object or predicate or relation or quantifier).
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Boolean connectives are interpreted as functions on the set {1,0} [Walicki]
     Full Idea: Boolean connectives are interpreted as functions on the set {1,0}.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 5.1)
     A reaction: 1 and 0 are normally taken to be true (T) and false (F). Thus the functions output various combinations of true and false, which are truth tables.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
The empty set is useful for defining sets by properties, when the members are not yet known [Walicki]
     Full Idea: The empty set is mainly a mathematical convenience - defining a set by describing the properties of its members in an involved way, we may not know from the very beginning what its members are.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 1.1)
The empty set avoids having to take special precautions in case members vanish [Walicki]
     Full Idea: Without the assumption of the empty set, one would often have to take special precautions for the case where a set happened to contain no elements.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 1.1)
     A reaction: Compare the introduction of the concept 'zero', where special precautions are therefore required. ...But other special precautions are needed without zero. Either he pays us, or we pay him, or ...er. Intersecting sets need the empty set.
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
Ordinals play the central role in set theory, providing the model of well-ordering [Walicki]
     Full Idea: Ordinals play the central role in set theory, providing the paradigmatic well-orderings.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: When you draw the big V of the iterative hierarchy of sets (built from successive power sets), the ordinals are marked as a single line up the middle, one ordinal for each level.
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
To determine the patterns in logic, one must identify its 'building blocks' [Walicki]
     Full Idea: In order to construct precise and valid patterns of arguments one has to determine their 'building blocks'. One has to identify the basic terms, their kinds and means of combination.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History Intro)
     A reaction: A deceptively simple and important idea. All explanation requires patterns and levels, and it is the idea of building blocks which makes such things possible. It is right at the centre of our grasp of everything.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A 'model' of a theory specifies interpreting a language in a domain to make all theorems true [Walicki]
     Full Idea: A specification of a domain of objects, and of the rules for interpreting the symbols of a logical language in this domain such that all the theorems of the logical theory are true is said to be a 'model' of the theory.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.1.3)
     A reaction: The basic ideas of this emerged 1915-30, but it needed Tarski's account of truth to really get it going.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The L-S Theorem says no theory (even of reals) says more than a natural number theory [Walicki]
     Full Idea: The L-S Theorem is ...a shocking result, since it implies that any consistent formal theory of everything - even about biology, physics, sets or the real numbers - can just as well be understood as being about natural numbers. It says nothing more.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.2)
     A reaction: Illuminating. Particularly the point that no theory about the real numbers can say anything more than a theory about the natural numbers. So the natural numbers contain all the truths we can ever express? Eh?????
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
A compact axiomatisation makes it possible to understand a field as a whole [Walicki]
     Full Idea: Having such a compact [axiomatic] presentation of a complicated field [such as Euclid's], makes it possible to relate not only to particular theorems but also to the whole field as such.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
Axiomatic systems are purely syntactic, and do not presuppose any interpretation [Walicki]
     Full Idea: Axiomatic systems, their primitive terms and proofs, are purely syntactic, that is, do not presuppose any interpretation. ...[142] They never address the world directly, but address a possible semantic model which formally represents the world.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Ordinals are transitive sets of transitive sets; or transitive sets totally ordered by inclusion [Walicki]
     Full Idea: An ordinal can be defined as a transitive set of transitive sets, or else, as a transitive set totally ordered by set inclusion.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
Ordinals are the empty set, union with the singleton, and any arbitrary union of ordinals [Walicki]
     Full Idea: The collection of ordinals is defined inductively: Basis: the empty set is an ordinal; Ind: for an ordinal x, the union with its singleton is also an ordinal; and any arbitrary (possibly infinite) union of ordinals is an ordinal.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: [symbolism translated into English] Walicki says they are called 'ordinal numbers', but are in fact a set.
The union of finite ordinals is the first 'limit ordinal'; 2ω is the second... [Walicki]
     Full Idea: We can form infinite ordinals by taking unions of ordinals. We can thus form 'limit ordinals', which have no immediate predecessor. ω is the first (the union of all finite ordinals), ω + ω = sω is second, 3ω the third....
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
Two infinite ordinals can represent a single infinite cardinal [Walicki]
     Full Idea: There may be several ordinals for the same cardinality. ...Two ordinals can represent different ways of well-ordering the same number (aleph-0) of elements.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: This only applies to infinite ordinals and cardinals. For the finite, the two coincide. In infinite arithmetic the rules are different.
Members of ordinals are ordinals, and also subsets of ordinals [Walicki]
     Full Idea: Every member of an ordinal is itself an ordinal, and every ordinal is a transitive set (its members are also its subsets; a member of a member of an ordinal is also a member of the ordinal).
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / d. Counting via concepts
Counting 'coin in this box' may have coin as the unit, with 'in this box' merely as the scope [Ayers]
     Full Idea: If we count the concept 'coin in this box', we could regard coin as the 'unit', while taking 'in this box' to limit the scope. Counting coins in two boxes would be not a difference in unit (kind of object), but in scope.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Counting')
     A reaction: This is a very nice alternative to the Fregean view of counting, depending totally on the concept, and rests more on a natural concept of object. I prefer Ayers. Compare 'count coins till I tell you to stop'.
If counting needs a sortal, what of things which fall under two sortals? [Ayers]
     Full Idea: If we accepted that counting objects always presupposes some sortal, it is surely clear that the class of objects to be counted could be designated by two sortals rather than one.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Realist' vii)
     A reaction: His nice example is an object which is both 'a single piece of wool' and a 'sweater', which had better not be counted twice. Wiggins struggles to argue that there is always one 'substance sortal' which predominates.
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
In non-Euclidean geometry, all Euclidean theorems are valid that avoid the fifth postulate [Walicki]
     Full Idea: Since non-Euclidean geometry preserves all Euclid's postulates except the fifth one, all the theorems derived without the use of the fifth postulate remain valid.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Inductive proof depends on the choice of the ordering [Walicki]
     Full Idea: Inductive proof is not guaranteed to work in all cases and, particularly, it depends heavily on the choice of the ordering.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.1.1)
     A reaction: There has to be an well-founded ordering for inductive proofs to be possible.
7. Existence / B. Change in Existence / 4. Events / a. Nature of events
Events do not have natural boundaries, and we have to set them [Ayers]
     Full Idea: In order to know which event has been ostensively identified by a speaker, the auditor must know the limits intended by the speaker. ...Events do not have natural boundaries.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Concl')
     A reaction: He distinguishes events thus from natural objects, where the world, to a large extent, offers us the boundaries. Nice point.
9. Objects / A. Existence of Objects / 5. Individuation / a. Individuation
To express borderline cases of objects, you need the concept of an 'object' [Ayers]
     Full Idea: The only explanation of the power to produce borderline examples like 'Is this hazelnut one object or two?' is the possession of the concept of an object.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Counting')
9. Objects / A. Existence of Objects / 5. Individuation / e. Individuation by kind
Speakers need the very general category of a thing, if they are to think about it [Ayers]
     Full Idea: If a speaker indicates something, then in order for others to catch his reference they must know, at some level of generality, what kind of thing is indicated. They must categorise it as event, object, or quality. Thinking about something needs that much.
     From: M.R. Ayers (Individuals without Sortals [1974], Intro)
     A reaction: Ayers defends the view that such general categories are required, but not the much narrower sortal terms defended by Geach and Wiggins. I'm with Ayers all the way. 'What the hell is that?'
We use sortals to classify physical objects by the nature and origin of their unity [Ayers]
     Full Idea: Sortals are the terms by which we intend to classify physical objects according to the nature and origin of their unity.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Concl')
     A reaction: This is as opposed to using sortals for the initial individuation. I take the perception of the unity to come first, so resemblance must be mentioned, though it can be an underlying (essentialist) resemblance.
Seeing caterpillar and moth as the same needs continuity, not identity of sortal concepts [Ayers]
     Full Idea: It is unnecessary to call moths 'caterpillars' or caterpillars 'moths' to see that they can be the same individual. It may be that our sortal concepts reflect our beliefs about continuity, but our beliefs about continuity need not reflect our sortals.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Realist' vi)
     A reaction: Something that metamorphosed through 15 different stages could hardly required 15 different sortals before we recognised the fact. Ayers is right.
Recognising continuity is separate from sortals, and must precede their use [Ayers]
     Full Idea: The recognition of the fact of continuity is logically independent of the possession of sortal concepts, whereas the formation of sortal concepts is at least psychologically dependent upon the recognition of continuity.
     From: M.R. Ayers (Individuals without Sortals [1974], Intro)
     A reaction: I take this to be entirely correct. I might add that unity must also be recognised.
9. Objects / B. Unity of Objects / 1. Unifying an Object / a. Intrinsic unification
Could the same matter have more than one form or principle of unity? [Ayers]
     Full Idea: The abstract question arises of whether the same matter could be subject to more than one principle of unity simultaneously, or unified by more than one 'form'.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Realist' vii)
     A reaction: He suggests that the unity of the sweater is destroyed by unravelling, and the unity of the thread by cutting.
9. Objects / B. Unity of Objects / 3. Unity Problems / c. Statue and clay
If there are two objects, then 'that marble, man-shaped object' is ambiguous [Ayers]
     Full Idea: The statue is marble and man-shaped, but so is the piece of marble. So not only are the two objects in the same place, but two marble and man-shaped objects in the same place, so 'that marble, man-shaped object' must be ambiguous or indefinite.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Prob')
     A reaction: It strikes me as basic that it can't be a piece of marble if you subtract its shape, and it can't be a statue if you subtract its matter. To treat a statue as an object, separately from its matter, is absurd.
9. Objects / D. Essence of Objects / 5. Essence as Kind
Sortals basically apply to individuals [Ayers]
     Full Idea: Sortals, in their primitive use, apply to the individual.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Concl')
     A reaction: If the sortal applies to the individual, any essence must pertain to that individual, and not to the class it has been placed in.
9. Objects / E. Objects over Time / 5. Temporal Parts
You can't have the concept of a 'stage' if you lack the concept of an object [Ayers]
     Full Idea: It would be impossible for anyone to have the concept of a stage who did not already possess the concept of a physical object.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Concl')
Temporal 'parts' cannot be separated or rearranged [Ayers]
     Full Idea: Temporally extended 'parts' are still mysteriously inseparable and not subject to rearrangement: a thing cannot be cut temporally in half.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Prob')
     A reaction: A nice warning to anyone accepting a glib analogy between spatial parts and temporal parts.
9. Objects / F. Identity among Objects / 1. Concept of Identity
Some say a 'covering concept' completes identity; others place the concept in the reference [Ayers]
     Full Idea: Some hold that the 'covering concept' completes the incomplete concept of identity, determining the kind of sameness involved. Others strongly deny the identity itself is incomplete, and locate the covering concept within the necessary act of reference.
     From: M.R. Ayers (Individuals without Sortals [1974], Intro)
     A reaction: [a bit compressed; Geach is the first view, and Quine the second; Wiggins is somewhere between the two]
9. Objects / F. Identity among Objects / 3. Relative Identity
If diachronic identities need covering concepts, why not synchronic identities too? [Ayers]
     Full Idea: Why are covering concepts required for diachronic identities, when they must be supposed unnecessary for synchronic identities?
     From: M.R. Ayers (Individuals without Sortals [1974], 'Prob')
10. Modality / A. Necessity / 2. Nature of Necessity
Scotus based modality on semantic consistency, instead of on what the future could allow [Walicki]
     Full Idea: The link between time and modality was severed by Duns Scotus, who proposed a notion of possibility based purely on the notion of semantic consistency. 'Possible' means for him logically possible, that is, not involving contradiction.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History B.4)
14. Science / D. Explanation / 1. Explanation / b. Aims of explanation
Explanation is generally to deduce it from something better known, which comes in degrees [Boyle]
     Full Idea: Generally speaking, to render a reason of an effect or phenomenon is to deduce it from something else in nature more known than itself, and consequently there may be diverse kinds of degrees of explication of the same thing.
     From: Robert Boyle (Certain Physical Essays [1672], II:21), quoted by Robert Pasnau - Metaphysical Themes 1274-1671 23.4
     A reaction: There is a picture of a real explanatory structure to nature, from which we pick bits that interest us for entirely pragmatic reasons. Boyle and I are as one on this matter.
14. Science / D. Explanation / 3. Best Explanation / b. Ultimate explanation
The best explanations get down to primary basics, but others go less deep [Boyle]
     Full Idea: Explications be most satisfactory that show how the effect is produced by the more primitive affects of matter (bulk, shape and motion) but are not to be despised that deduce them from more familiar qualities such as heat, weight, fluidity, fermentation.
     From: Robert Boyle (Certain Physical Essays [1672], II:22), quoted by Robert Pasnau - Metaphysical Themes 1274-1671 23.4
     A reaction: [Compressed, and continued from Idea 16736] So there is a causal structure, and the best explanations go to the bottom of it, but lesser explanations only go half way down. So a very skimpy explanation ('dormative power') is still an explanation.