Combining Texts

All the ideas for 'Individuals without Sortals', 'Penguin Dictionary of Philosophy' and 'Principia Mathematica'

unexpand these ideas     |    start again     |     specify just one area for these texts


86 ideas

1. Philosophy / D. Nature of Philosophy / 1. Philosophy
Philosophy must abstract from the senses [Newton]
     Full Idea: In philosophy abstraction from the senses is required.
     From: Isaac Newton (Principia Mathematica [1687], Def 8 Schol)
     A reaction: He particularly means 'natural philosophy' (i.e. science), but there is no real distinction in Newton's time, and I would say this remark is true of modern philosophy.
1. Philosophy / F. Analytic Philosophy / 5. Linguistic Analysis
Linguistic philosophy approaches problems by attending to actual linguistic usage [Mautner]
     Full Idea: Linguistic philosophy gives careful attention to actual linguistic usage as a method of dealing with problems of philosophy, resulting in either their solution or dissolution.
     From: Thomas Mautner (Penguin Dictionary of Philosophy [1996], p.318)
     A reaction: This approach is now deeply discredited and unfashionable, and, I think (on the whole), rightly so. Philosophy should aim a little higher in (say) epistemology than merely describing how people use words like 'know' and 'believe' and 'justify'.
1. Philosophy / F. Analytic Philosophy / 7. Limitations of Analysis
Analytic philosophy studies the unimportant, and sharpens tools instead of using them [Mautner]
     Full Idea: Critics of analytic philosophers accuse them of excessive attention to relatively unimportant matters, and of being more interested in sharpening tools than in using them.
     From: Thomas Mautner (Penguin Dictionary of Philosophy [1996], p.111)
     A reaction: The last part is a nice comment. Both criticisms seem to me to contain some justice, but recently things have improved (notably in the new attention paid by analytical philosophy to metaphysics). In morality analytic philosophy seems superior.
1. Philosophy / H. Continental Philosophy / 3. Hermeneutics
The 'hermeneutic circle' says parts and wholes are interdependent, and so cannot be interpreted [Mautner]
     Full Idea: The 'hermeneutic circle' consists in the fact that an interpretation of part of a text requires a prior understanding of the whole, and the interpretation of the whole requires a prior understanding of its parts.
     From: Thomas Mautner (Penguin Dictionary of Philosophy [1996], p.247)
     A reaction: This strikes me as a benign circle, solved the way Aristotle solves the good man/good action circle. You make a start somewhere, like a child learning to speak, and work your way into the circle. Not really a problem.
2. Reason / D. Definition / 4. Real Definition
'Real' definitions give the essential properties of things under a concept [Mautner]
     Full Idea: A 'real definition' (as opposed to a linguistic one) is a statement which gives the essential properties of the things to which a given concept applies.
     From: Thomas Mautner (Penguin Dictionary of Philosophy [1996], 'definition')
     A reaction: This is often seen as old-fashioned, Aristotelian, and impossible to achieve, but I like it and aspire to it. One can hardly be precise about which properties are 'essential' to something, but there are clear cases. Your 'gold' had better not be brass.
2. Reason / D. Definition / 7. Contextual Definition
'Contextual definitions' replace whole statements, not just expressions [Mautner]
     Full Idea: Usually in a definition the definiens (definition) can replace the definiendum (expression defined), but in a 'contextual definition' only the whole statement containing the definiens can replace the whole statement containing the definiendum.
     From: Thomas Mautner (Penguin Dictionary of Philosophy [1996], 'definition')
     A reaction: These definitions are crucial to Frege's enterprise in the 'Grundlagen'. Logicians always want to achieve definition with a single neat operation, but in ordinary language we talk around a definition, giving a variety of possibilities (as in teaching).
2. Reason / D. Definition / 9. Recursive Definition
Recursive definition defines each instance from a previous instance [Mautner]
     Full Idea: An example of a recursive definition is 'y is an ancestor of x' is defined as 'y is a parent of x, or y is a parent of an ancestor of x'.
     From: Thomas Mautner (Penguin Dictionary of Philosophy [1996], 'definition')
     A reaction: From this example I guess that 'ancestor' means 'friend'. Or have I misunderstood? I think we need to define 'grand-parent' as well, and then offer the definition of 'ancestor' with the words 'and so on...'. Essentially, it is mathematical induction.
2. Reason / D. Definition / 10. Stipulative Definition
A stipulative definition lays down that an expression is to have a certain meaning [Mautner]
     Full Idea: A stipulative definition lays down that a given linguistic expression is to have a certain meaning; this is why they cannot be said to be correct or incorrect.
     From: Thomas Mautner (Penguin Dictionary of Philosophy [1996], 'definition')
     A reaction: These are uncontroversial when they are explicitly made in writing by a single person. The tricky case is where they are implicitly made in conversation by a community. After a century or two these look like facts, their origin having been lost.
2. Reason / D. Definition / 11. Ostensive Definition
Ostensive definitions point to an object which an expression denotes [Mautner]
     Full Idea: Ostensive definitions explain what an expression means by pointing to an object, action, event, etc. denoted by the expression.
     From: Thomas Mautner (Penguin Dictionary of Philosophy [1996], 'definition')
     A reaction: These will need some context. If I define 'red' simply by pointing to a red square, you might conclude that 'red' means square. If I point to five varied red objects, you have to do the work of spotting the common ingredient. I can't mention 'colour'.
2. Reason / F. Fallacies / 5. Fallacy of Composition
The fallacy of composition is the assumption that what is true of the parts is true of the whole [Mautner]
     Full Idea: The fallacy of composition is an inference relying on the invalid principle that whatever is true of every part is also true of the whole; thus, we cannot assume that because the members of a committee are rational, that the committee as a whole is.
     From: Thomas Mautner (Penguin Dictionary of Philosophy [1996], p.102)
     A reaction: This is a very common and very significant fallacy, which is perpetrated by major philosophers like Aristotle (Idea 31), unlike most of the other informal fallacies.
4. Formal Logic / E. Nonclassical Logics / 4. Fuzzy Logic
Fuzzy logic is based on the notion that there can be membership of a set to some degree [Mautner]
     Full Idea: Fuzzy logic is based upon fuzzy set-theory, in which the simple notion of membership of a set is replaced by a notion of membership to some degree.
     From: Thomas Mautner (Penguin Dictionary of Philosophy [1996], p.214)
     A reaction: The idea that something could be to some degree a 'heap of sand' sounds plausible, but Williamson and Sorensen claim that the vagueness is all in us (i.e. it is epistemological), and not in the world. This will scupper fuzzy logic.
5. Theory of Logic / B. Logical Consequence / 6. Entailment
Entailment is logical requirement; it may be not(p and not-q), but that has problems [Mautner]
     Full Idea: Entailment is the modern word saying that p logically follows from q. Its simplest definition is that you cannot have both p and not-q, but this has the problem that if p is impossible it will entail every possible proposition, which seems unacceptable.
     From: Thomas Mautner (Penguin Dictionary of Philosophy [1996], p.169)
     A reaction: The word 'entail' was introduced by G.E. Moore in 1920, in preference to 'imply'. It seems clear that we need terms for (say) active implication (q must be true if p is true) and passive implication (p must be false if q is false).
5. Theory of Logic / B. Logical Consequence / 7. Strict Implication
Strict implication says false propositions imply everything, and everything implies true propositions [Mautner]
     Full Idea: Strict implication [not(p and not-q)] carries the paradoxes that a false proposition (p) implies any proposition (q), and a true proposition (q) is materially implied by any proposition (p).
     From: Thomas Mautner (Penguin Dictionary of Philosophy [1996], p.270)
     A reaction: This seems to show that we have two drastically different notions of implication; one (the logician's) is boring and is defined by a truth table; the other (the ordinary interesting one) says if you have one truth you can deduce a second.
5. Theory of Logic / B. Logical Consequence / 8. Material Implication
'Material implication' is defined as 'not(p and not-q)', but seems to imply a connection between p and q [Mautner]
     Full Idea: 'Material implication' is a term introduced by Russell which is defined as 'the conjunction of p and not-q is false', but carries a strong implication that p implies q, and so there must be some kind of connection between them, which is misleading.
     From: Thomas Mautner (Penguin Dictionary of Philosophy [1996], p.270)
     A reaction: Mautner says statements of the form 'if p then q' are better called 'conditionals' than 'material implications'. Clearly there is a need for more precise terminology here, as the underlying concepts seem simple enough.
A person who 'infers' draws the conclusion, but a person who 'implies' leaves it to the audience [Mautner]
     Full Idea: 'Implying' is different from 'inferring', because a person who infers draws the conclusion, but a person who implies leaves it to the audience to draw the conclusion.
     From: Thomas Mautner (Penguin Dictionary of Philosophy [1996], p.279)
     A reaction: I had always taken it just that the speaker does the implying and the audience does the inferring. Of course a speaker may not know what he or she is implying, but an audience must be aware of what it is inferring.
5. Theory of Logic / D. Assumptions for Logic / 1. Bivalence
Vagueness seems to be inconsistent with the view that every proposition is true or false [Mautner]
     Full Idea: Vagueness is of great philosophical interest because it seems to be inconsistent with the view that every proposition is true or false.
     From: Thomas Mautner (Penguin Dictionary of Philosophy [1996], p.585)
     A reaction: This would explain why Williamson and Sorensen are keen to argue that vagueness is an epistemological (rather than ontological) problem. In ordinary English we are happy to say that p is 'sort of true' or 'fairly true'.
5. Theory of Logic / G. Quantification / 1. Quantification
Quantifiers turn an open sentence into one to which a truth-value can be assigned [Mautner]
     Full Idea: In formal logic, quantifiers are operators that turn an open sentence into a sentence to which a truth-value can be assigned.
     From: Thomas Mautner (Penguin Dictionary of Philosophy [1996], p.464)
     A reaction: The standard quantifiers are 'all' and 'at least one'. The controversy is whether quantifiers actually assert existence, or whether (as McGinn says) they merely specify the subject matter of the sentence. I prefer the latter.
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Newton developed a kinematic approach to geometry [Newton, by Kitcher]
     Full Idea: The reduction of the problems of tangents, normals, curvature, maxima and minima were effected by Newton's kinematic approach to geometry.
     From: report of Isaac Newton (Principia Mathematica [1687]) by Philip Kitcher - The Nature of Mathematical Knowledge 10.1
     A reaction: This approach apparently contrasts with that of Leibniz.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / d. Counting via concepts
Counting 'coin in this box' may have coin as the unit, with 'in this box' merely as the scope [Ayers]
     Full Idea: If we count the concept 'coin in this box', we could regard coin as the 'unit', while taking 'in this box' to limit the scope. Counting coins in two boxes would be not a difference in unit (kind of object), but in scope.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Counting')
     A reaction: This is a very nice alternative to the Fregean view of counting, depending totally on the concept, and rests more on a natural concept of object. I prefer Ayers. Compare 'count coins till I tell you to stop'.
If counting needs a sortal, what of things which fall under two sortals? [Ayers]
     Full Idea: If we accepted that counting objects always presupposes some sortal, it is surely clear that the class of objects to be counted could be designated by two sortals rather than one.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Realist' vii)
     A reaction: His nice example is an object which is both 'a single piece of wool' and a 'sweater', which had better not be counted twice. Wiggins struggles to argue that there is always one 'substance sortal' which predominates.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / l. Limits
Quantities and ratios which continually converge will eventually become equal [Newton]
     Full Idea: Quantities and the ratios of quantities, which in any finite time converge continually to equality, and, before the end of that time approach nearer to one another by any given difference become ultimately equal.
     From: Isaac Newton (Principia Mathematica [1687], Lemma 1), quoted by Philip Kitcher - The Nature of Mathematical Knowledge 10.2
     A reaction: Kitcher observes that, although Newton relies on infinitesimals, this quotation expresses something close to the later idea of a 'limit'.
7. Existence / B. Change in Existence / 4. Events / a. Nature of events
Events do not have natural boundaries, and we have to set them [Ayers]
     Full Idea: In order to know which event has been ostensively identified by a speaker, the auditor must know the limits intended by the speaker. ...Events do not have natural boundaries.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Concl')
     A reaction: He distinguishes events thus from natural objects, where the world, to a large extent, offers us the boundaries. Nice point.
8. Modes of Existence / C. Powers and Dispositions / 2. Powers as Basic
I suspect that each particle of bodies has attractive or repelling forces [Newton]
     Full Idea: Many things lead me to a suspicion that all phenomena may depend on certain forces by which the particles of bodies, by causes not yet known, either are impelled toward one another and cohere in regular figures,or are repelled from one another and recede.
     From: Isaac Newton (Principia Mathematica [1687], Pref)
     A reaction: For Newton, forces are not just abstractions that are convenient for mathematics, but realities which I would say are best described as 'powers'.
9. Objects / A. Existence of Objects / 5. Individuation / a. Individuation
To express borderline cases of objects, you need the concept of an 'object' [Ayers]
     Full Idea: The only explanation of the power to produce borderline examples like 'Is this hazelnut one object or two?' is the possession of the concept of an object.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Counting')
9. Objects / A. Existence of Objects / 5. Individuation / e. Individuation by kind
Speakers need the very general category of a thing, if they are to think about it [Ayers]
     Full Idea: If a speaker indicates something, then in order for others to catch his reference they must know, at some level of generality, what kind of thing is indicated. They must categorise it as event, object, or quality. Thinking about something needs that much.
     From: M.R. Ayers (Individuals without Sortals [1974], Intro)
     A reaction: Ayers defends the view that such general categories are required, but not the much narrower sortal terms defended by Geach and Wiggins. I'm with Ayers all the way. 'What the hell is that?'
We use sortals to classify physical objects by the nature and origin of their unity [Ayers]
     Full Idea: Sortals are the terms by which we intend to classify physical objects according to the nature and origin of their unity.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Concl')
     A reaction: This is as opposed to using sortals for the initial individuation. I take the perception of the unity to come first, so resemblance must be mentioned, though it can be an underlying (essentialist) resemblance.
Seeing caterpillar and moth as the same needs continuity, not identity of sortal concepts [Ayers]
     Full Idea: It is unnecessary to call moths 'caterpillars' or caterpillars 'moths' to see that they can be the same individual. It may be that our sortal concepts reflect our beliefs about continuity, but our beliefs about continuity need not reflect our sortals.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Realist' vi)
     A reaction: Something that metamorphosed through 15 different stages could hardly required 15 different sortals before we recognised the fact. Ayers is right.
Recognising continuity is separate from sortals, and must precede their use [Ayers]
     Full Idea: The recognition of the fact of continuity is logically independent of the possession of sortal concepts, whereas the formation of sortal concepts is at least psychologically dependent upon the recognition of continuity.
     From: M.R. Ayers (Individuals without Sortals [1974], Intro)
     A reaction: I take this to be entirely correct. I might add that unity must also be recognised.
9. Objects / B. Unity of Objects / 1. Unifying an Object / a. Intrinsic unification
Could the same matter have more than one form or principle of unity? [Ayers]
     Full Idea: The abstract question arises of whether the same matter could be subject to more than one principle of unity simultaneously, or unified by more than one 'form'.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Realist' vii)
     A reaction: He suggests that the unity of the sweater is destroyed by unravelling, and the unity of the thread by cutting.
9. Objects / B. Unity of Objects / 1. Unifying an Object / b. Unifying aggregates
Particles mutually attract, and cohere at short distances [Newton]
     Full Idea: The particles of bodies attract one another at very small distances and cohere when they become contiguous.
     From: Isaac Newton (Principia Mathematica [1687], Bk 3 Gen Schol)
     A reaction: This is the sort of account of unity which has to be given in the corpuscular view of things, once substantial forms are given up. What is missing here is the structure of the thing. A lump of dirt is as unified as a cat in this story.
9. Objects / B. Unity of Objects / 3. Unity Problems / c. Statue and clay
If there are two objects, then 'that marble, man-shaped object' is ambiguous [Ayers]
     Full Idea: The statue is marble and man-shaped, but so is the piece of marble. So not only are the two objects in the same place, but two marble and man-shaped objects in the same place, so 'that marble, man-shaped object' must be ambiguous or indefinite.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Prob')
     A reaction: It strikes me as basic that it can't be a piece of marble if you subtract its shape, and it can't be a statue if you subtract its matter. To treat a statue as an object, separately from its matter, is absurd.
9. Objects / C. Structure of Objects / 8. Parts of Objects / b. Sums of parts
The place of a thing is the sum of the places of its parts [Newton]
     Full Idea: The place of a whole is the same as the sum of the places of the parts, and is therefore internal and in the whole body.
     From: Isaac Newton (Principia Mathematica [1687], Def 8 Schol)
     A reaction: Note that Newton is talking of the sums of places, and deriving them from the parts. This is the mereology of space.
9. Objects / D. Essence of Objects / 5. Essence as Kind
Sortals basically apply to individuals [Ayers]
     Full Idea: Sortals, in their primitive use, apply to the individual.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Concl')
     A reaction: If the sortal applies to the individual, any essence must pertain to that individual, and not to the class it has been placed in.
9. Objects / E. Objects over Time / 5. Temporal Parts
You can't have the concept of a 'stage' if you lack the concept of an object [Ayers]
     Full Idea: It would be impossible for anyone to have the concept of a stage who did not already possess the concept of a physical object.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Concl')
Temporal 'parts' cannot be separated or rearranged [Ayers]
     Full Idea: Temporally extended 'parts' are still mysteriously inseparable and not subject to rearrangement: a thing cannot be cut temporally in half.
     From: M.R. Ayers (Individuals without Sortals [1974], 'Prob')
     A reaction: A nice warning to anyone accepting a glib analogy between spatial parts and temporal parts.
9. Objects / F. Identity among Objects / 1. Concept of Identity
Some say a 'covering concept' completes identity; others place the concept in the reference [Ayers]
     Full Idea: Some hold that the 'covering concept' completes the incomplete concept of identity, determining the kind of sameness involved. Others strongly deny the identity itself is incomplete, and locate the covering concept within the necessary act of reference.
     From: M.R. Ayers (Individuals without Sortals [1974], Intro)
     A reaction: [a bit compressed; Geach is the first view, and Quine the second; Wiggins is somewhere between the two]
9. Objects / F. Identity among Objects / 3. Relative Identity
If diachronic identities need covering concepts, why not synchronic identities too? [Ayers]
     Full Idea: Why are covering concepts required for diachronic identities, when they must be supposed unnecessary for synchronic identities?
     From: M.R. Ayers (Individuals without Sortals [1974], 'Prob')
10. Modality / B. Possibility / 9. Counterfactuals
Counterfactuals presuppose a belief (or a fact) that the condition is false [Mautner]
     Full Idea: A conditional is called counterfactual because its use seems to presuppose that the user believes its antecedent to be false. Some insist that the antecedent must actually be false.
     From: Thomas Mautner (Penguin Dictionary of Philosophy [1996], p.114)
     A reaction: I am inclined to favour the stricter second version. "If I am on Earth then I have weight" hardly sounds counterfactual. However, in "If there is a God then I will be saved" it is not clear whether it is counterfactual, so it had better be included.
Counterfactuals are not true, they are merely valid [Mautner]
     Full Idea: One view of counterfactuals says they are not true, but are merely valid.
     From: Thomas Mautner (Penguin Dictionary of Philosophy [1996], p.114)
     A reaction: This makes counterfactuals a branch of logic rather than of metaphysics. I find the metaphysical view more exciting as they are part of speculation and are beyond the capacity of computers (which I suspect they are).
Counterfactuals are true if in every world close to actual where p is the case, q is also the case [Mautner]
     Full Idea: Another view of counterfactuals (Lewis, Pollock, Stalnaker) is that they are true if at every possible world at which it is the case that p, and which is otherwise as similar as possible to the actual world, it is also the case that q.
     From: Thomas Mautner (Penguin Dictionary of Philosophy [1996], p.114)
     A reaction: This seems a good way if putting if, like Lewis, you actually believe in the reality of possible worlds, because then you are saying a counterfactual is made true by a set of facts. Otherwise it is not clear what the truth-maker is here.
Counterfactuals say 'If it had been, or were, p, then it would be q' [Mautner]
     Full Idea: A counterfactual conditional (or 'counterfactual') is a proposition or sentence of the form 'If it had been the case that p, then it would have been the case that q', or 'If it were the case that p, then it would be the case that q'.
     From: Thomas Mautner (Penguin Dictionary of Philosophy [1996], p.114)
     A reaction: The first statement refers to the past, but the second (a subjunctive) refers to any situation at any time. We know more about inferences that we could have made in the past than we do about what is inferable at absolutely any time.
Maybe counterfactuals are only true if they contain valid inference from premisses [Mautner]
     Full Idea: One view of counterfactuals (Chisholm, Goodman, Rescher) is that they are only true if there is a valid logical inference from p and some other propositions of certain kinds (controversial) to q.
     From: Thomas Mautner (Penguin Dictionary of Philosophy [1996], p.115)
     A reaction: The aspiration that counterfactual claims should reduce to pure logic sounds a bit hopeful to me. Logic is precise, but assertions about how things would be is speculative and imaginative.
10. Modality / C. Sources of Modality / 6. Necessity from Essence
Essentialism is often identified with belief in 'de re' necessary truths [Mautner]
     Full Idea: Many writers identify essentialism with the belief in 'de re' necessary truths
     From: Thomas Mautner (Penguin Dictionary of Philosophy [1996], p.179)
     A reaction: I like essentialism, but I cautious about this. If I accept that I have an essential personal identity as I write this, but that it could change over time, the same principle might apply to other natural essences.
11. Knowledge Aims / B. Certain Knowledge / 3. Fallibilism
Fallibilism is the view that all knowledge-claims are provisional [Mautner]
     Full Idea: Fallibilism is the view, proposed by Peirce, and found in Reichenbach, Popper, Quine etc that all knowledge-claims are provisional and in principle revisable, or that the possibility of error is ever-present.
     From: Thomas Mautner (Penguin Dictionary of Philosophy [1996], p.194)
     A reaction: I think of this as footnote to all thought which reads "Note 1: but you never quite know". Personally I would call myself a fallibilist, and am surprise at anyone who doesn't. The point is that this does not negate 'knowledge'. I am fairly sure 2+3=5.
12. Knowledge Sources / B. Perception / 4. Sense Data / a. Sense-data theory
'Sense-data' arrived in 1910, but it denotes ideas in Locke, Berkeley and Hume [Mautner]
     Full Idea: The term 'sense-data' gained currency around 1910, through writings of Moore and Russell, but it seems to denote at least some of the things referred to as 'ideas of sense' (Locke), or 'ideas' and 'sensible qualities' (Berkeley), or 'impressions' (Hume).
     From: Thomas Mautner (Penguin Dictionary of Philosophy [1996], p.518)
     A reaction: See also Hobbes in Idea 2356 for an even earlier version. It looks as if the concept of sense-data is almost unavoidable for empiricists, and yet most modern empiricists have rejected them. You still have to give an account of perceptual illusions.
14. Science / B. Scientific Theories / 6. Theory Holism
If you changed one of Newton's concepts you would destroy his whole system [Heisenberg on Newton]
     Full Idea: The connection between the different concept in [Newton's] system is so close that one could generally not change any one of the concepts without destroying the whole system
     From: comment on Isaac Newton (Principia Mathematica [1687]) by Werner Heisenberg - Physics and Philosophy 06
     A reaction: This holistic situation would seem to count against Newton's system, rather than for it. A good system should depend on nature, not on other parts of the system. Compare changing a rule of chess.
14. Science / C. Induction / 1. Induction
Science deduces propositions from phenomena, and generalises them by induction [Newton]
     Full Idea: In experimental philosophy, propositions are deduced from the phenomena and are made general by induction.
     From: Isaac Newton (Principia Mathematica [1687], Bk 3 Gen Schol)
     A reaction: Sounds easy, but generalising by induction requires all sorts of assumptions about the stability of natural kinds. Since the kinds are only arrived at by induction, it is not easy to give a proper account here.
14. Science / C. Induction / 5. Paradoxes of Induction / a. Grue problem
Observing lots of green x can confirm 'all x are green' or 'all x are grue', where 'grue' is arbitrary [Mautner, by PG]
     Full Idea: Observing green emeralds can confirm 'all emeralds are green' or 'all emeralds are grue', where 'grue' is an arbitrary predicate meaning 'green until t and then blue'. Thus predictions are arbitrary, depending on how the property is described.
     From: report of Thomas Mautner (Penguin Dictionary of Philosophy [1996], p.225) by PG - Db (ideas)
     A reaction: This increasingly strikes me as the sort of sceptical nonsense that is concocted by philosophers who are enthralled to language instead of reality. It does draw attention to an expectation of stability in induction, both in language and in nature.
14. Science / C. Induction / 5. Paradoxes of Induction / b. Raven paradox
'All x are y' is equivalent to 'all non-y are non-x', so observing paper is white confirms 'ravens are black' [Mautner, by PG]
     Full Idea: If observing a white sheet of paper confirms that 'all non-black things are non-ravens', and that is logically equivalent to 'all ravens are black' (which it is), then the latter proposition is confirmed by irrelevant observations.
     From: report of Thomas Mautner (Penguin Dictionary of Philosophy [1996], p.105) by PG - Db (ideas)
     A reaction: This seems to me more significant than the 'grue' paradox. If some observations can be totally irrelevant (except to God?), then some observations are much more relevant than others, so relevance is a crucial aspect of induction.
14. Science / D. Explanation / 2. Types of Explanation / g. Causal explanations
We should admit only enough causes to explain a phenomenon, and no more [Newton]
     Full Idea: No more causes of natural things should be admitted than are both true and sufficient to explain the phenomena. …For nature does nothing in vain, …and nature is simple and does not indulge in the luxury of superfluous causes.
     From: Isaac Newton (Principia Mathematica [1687], Bk 3 Rule 1)
     A reaction: This emphasises that Ockham's Razor is a rule for physical explanation, and not just one for abstract theories. This is something like Van Fraassen's 'empirical adequacy'.
Natural effects of the same kind should be assumed to have the same causes [Newton]
     Full Idea: The causes assigned to natural effects of the same kind must be, so far as possible, the same. For example, the cause of respiration in man and beast.
     From: Isaac Newton (Principia Mathematica [1687], Bk 3 Rule 2)
     A reaction: It is impossible to rule out identical effects from differing causes, but explanation gets much more exciting (because wide-ranging) if Newton's rule is assumed.
14. Science / D. Explanation / 2. Types of Explanation / k. Explanations by essence
From the phenomena, I can't deduce the reason for the properties of gravity [Newton]
     Full Idea: I have not as yet been able to deduce from the phenomena the reason for the properties of gravity.
     From: Isaac Newton (Principia Mathematica [1687], Bk 3 Gen Schol)
     A reaction: I take it that giving the reasons for the properties of gravity would be an essentialist explanation. I am struck by the fact that the recent discovery of the Higgs Boson appears to give us a reason why things have mass (i.e. what causes mass).
19. Language / C. Assigning Meanings / 9. Indexical Semantics
The references of indexicals ('there', 'now', 'I') depend on the circumstances of utterance [Mautner]
     Full Idea: Indexicals are expressions whose references depend on the circumstances of utterance, such as 'here', 'now', 'last month' 'I', 'you'. It was introduced by Peirce; Reichenbach called them 'token-reflexive', Russell 'ego-centric particulars'.
     From: Thomas Mautner (Penguin Dictionary of Philosophy [1996], p.272)
     A reaction: Peirce's terminology seems best. They obviously create great problems for any theory of reference which is rather theoretical and linguistic, such as by the use of descriptions. You can't understand 'Look at that!' without practical awareness.
20. Action / C. Motives for Action / 5. Action Dilemmas / b. Double Effect
Double effect is the distinction between what is foreseen and what is intended [Mautner]
     Full Idea: The doctrine of double effect is that there is a moral distinction between what is foreseen by an agent as a likely result of an action, and what is intended.
     From: Thomas Mautner (Penguin Dictionary of Philosophy [1996], p.150)
     A reaction: Abortion for a pregnancy threatening the mother's life. What always intrigues me is the effects which you didn't foresee because you couldn't be bothered to think about them. How much obligation do you have to try to foresee events?
Double effect acts need goodness, unintended evil, good not caused by evil, and outweighing [Mautner]
     Full Idea: It is suggested the double effect act requires 1) the act is good, 2) the bad effect is not intended, and is avoided if possible, 3) the bad effect doesn't cause the good result, 4) the good must outweigh the bad side effect.
     From: Thomas Mautner (Penguin Dictionary of Philosophy [1996], p.151)
     A reaction: It is suggested that these won't work for permissibility of an action, but they might be appropriate for blameworthiness. Personally I am rather impressed by the four-part framework here, whatever nitpicking objections others may have found.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / e. Human nature
'Essentialism' is opposed to existentialism, and claims there is a human nature [Mautner]
     Full Idea: In philosophical anthropology, the view that there is a human nature or essence is called 'essentialism'. It became current in 1946 as a contrast to Sartre's existentialist view.
     From: Thomas Mautner (Penguin Dictionary of Philosophy [1996], p.179)
     A reaction: Being a fan of Aristotle, I incline towards the older view, but you cannot get away from the fact that the human brain has similarities to a Universal Turing Machine, and diverse cultures produce very different individuals.
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / c. Ultimate substances
Newton's four fundamentals are: space, time, matter and force [Newton, by Russell]
     Full Idea: Newton works with four fundamental concepts: space, time, matter and force.
     From: report of Isaac Newton (Principia Mathematica [1687]) by Bertrand Russell - My Philosophical Development Ch.2
     A reaction: The ontological challenge is to reduce these in number, presumably. They are, notoriously, defined in terms of one another.
26. Natural Theory / A. Speculations on Nature / 7. Later Matter Theories / a. Early Modern matter
Mass is central to matter [Newton, by Hart,WD]
     Full Idea: For Newton, mass is central to matter.
     From: report of Isaac Newton (Principia Mathematica [1687]) by William D. Hart - The Evolution of Logic 2
     A reaction: On reading this, I realise that this is the concept of matter I have grown up with, one which makes it very hard to grasp what the Greeks were thinking of when they referred to matter [hule].
26. Natural Theory / A. Speculations on Nature / 7. Later Matter Theories / b. Corpuscles
An attraction of a body is the sum of the forces of their particles [Newton]
     Full Idea: The attractions of the bodies must be reckoned by assigning proper forces to their individual particles and then taking the sums of those forces.
     From: Isaac Newton (Principia Mathematica [1687], 1.II.Schol)
     A reaction: This is using the parts of bodies to give fundamental explanations, rather than invoking substantial forms. The parts need not be atoms.
26. Natural Theory / C. Causation / 1. Causation
Newtonian causation is changes of motion resulting from collisions [Newton, by Baron/Miller]
     Full Idea: In the Newtonian mechanistic theory of causation, ….something causes a result when it brings about a change of motion. …Causation is a matter of things bumping into one another.
     From: report of Isaac Newton (Principia Mathematica [1687]) by Baron,S/Miller,K - Intro to the Philosophy of Time 6.2.1
     A reaction: This seems to need impenetrability and elasticity as primitives (which is partly what Leibniz's monads are meant to explain). The authors observe that much causation is the result of existences and qualities, rather than motions.
26. Natural Theory / D. Laws of Nature / 6. Laws as Numerical
You have discovered that elliptical orbits result just from gravitation and planetary movement [Newton, by Leibniz]
     Full Idea: You have made the astonishing discovery that Kepler's ellipses result simply from the conception of attraction or gravitation and passage in a planet.
     From: report of Isaac Newton (Principia Mathematica [1687]) by Gottfried Leibniz - Letter to Newton 1693.03.07
     A reaction: I quote this to show that Newton made 'an astonishing discovery' of a connection in nature, and did not merely produce an equation which described a pattern of behaviour. The simple equation is the proof of the connection.
We have given up substantial forms, and now aim for mathematical laws [Newton]
     Full Idea: The moderns - rejecting substantial forms and occult qualities - have undertaken to reduce the phenomena of nature to mathematical laws.
     From: Isaac Newton (Principia Mathematica [1687], Preface)
     A reaction: This is the simplest statement of the apparent anti-Aristotelian revolution in the seventeenth century.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / c. Essence and laws
I am not saying gravity is essential to bodies [Newton]
     Full Idea: I am by no means asserting that gravity is essential to bodies.
     From: Isaac Newton (Principia Mathematica [1687], Bk 3 Rule 3)
     A reaction: Notice that in Idea 17009 he does not rule out gravity being essential to bodies. This is Newton's intellectual modesty (for which he is not famous).
27. Natural Reality / A. Classical Physics / 1. Mechanics / a. Explaining movement
Newton reclassified vertical motion as violent, and unconstrained horizontal motion as natural [Newton, by Harré]
     Full Idea: Following Kepler, Newton assumed a law of universal gravitation, thus reclassifying free fall as a violent motion and, with his First Law, fixing horizontal motion in the absence of constraints as natural
     From: report of Isaac Newton (Principia Mathematica [1687]) by Rom Harré - Laws of Nature 1
     A reaction: This is in opposition to the Aristotelian view, where the downward motion of physical objects is their natural motion.
27. Natural Reality / A. Classical Physics / 1. Mechanics / b. Laws of motion
Inertia rejects the Aristotelian idea of things having natural states, to which they return [Newton, by Alexander,P]
     Full Idea: Newton's principle of inertia implies a rejection of the Aristotelian idea of natural states to which things naturally return.
     From: report of Isaac Newton (Principia Mathematica [1687]) by Peter Alexander - Ideas, Qualities and Corpuscles 02.3
     A reaction: I think we can safely say that Aristotle was wrong about this. Aristotle made too much (such as the gravity acting on a thing) intrinsic to the bodies, when the whole context must be seen.
1: Bodies rest, or move in straight lines, unless acted on by forces [Newton]
     Full Idea: Law 1: Every body perseveres in its state of being at rest or of moving uniformly straight forward, except insofar as it is compelled to change its state by forces impressed.
     From: Isaac Newton (Principia Mathematica [1687], Axioms)
     A reaction: This is the new concept of inertia, which revolutionises the picture. Motion itself, which was a profound puzzle for the Greeks, ceases to be a problem by being axiomatised. It is now acceleration which is the the problem.
2: Change of motion is proportional to the force [Newton]
     Full Idea: Law 2: A change in motion is proportional to the motive force impressed and takes place along the straight line in which that force is impressed.
     From: Isaac Newton (Principia Mathematica [1687], Axioms)
     A reaction: This gives the equation 'force = mass x acceleration', where the mass is the constant needed for the equation of proportion. Effectively mass is just the value of a proportion.
3: All actions of bodies have an equal and opposite reaction [Newton]
     Full Idea: Law 3: To any action there is always an opposite and equal reaction; in other words, the action of two bodies upon each other are always equal and always opposite in direction.
     From: Isaac Newton (Principia Mathematica [1687], Axioms)
     A reaction: Is this still true if one body is dented by the impact and the other one isn't? What counts as a 'body'?
Newton's Third Law implies the conservation of momentum [Newton, by Papineau]
     Full Idea: Newton's Third Law implies the conservation of momentum, because 'action and reaction' are always equal.
     From: report of Isaac Newton (Principia Mathematica [1687]) by David Papineau - Thinking about Consciousness App 3
     A reaction: That is, the Third Law implies the First Law (which is the Law of Momentum).
27. Natural Reality / A. Classical Physics / 1. Mechanics / c. Forces
Newton's idea of force acting over a long distance was very strange [Heisenberg on Newton]
     Full Idea: Newton introduced a very new and strange hypothesis by assuming a force that acted over a long distance.
     From: comment on Isaac Newton (Principia Mathematica [1687]) by Werner Heisenberg - Physics and Philosophy 06
     A reaction: Why would a force that acted over a short distance be any less mysterious?
Newton introduced forces other than by contact [Newton, by Papineau]
     Full Idea: Newton allowed forces other than impact. All the earlier proponents of 'mechanical philosophy' took it as given that all physical action is by contact. ...He thought of 'impressed force' - disembodied entities acting from outside a body.
     From: report of Isaac Newton (Principia Mathematica [1687]) by David Papineau - Thinking about Consciousness App 3
     A reaction: This is 'action at a distance', which was as bewildering then as quantum theory is now. Newton had a divinity to impose laws of nature from the outside. In some ways we have moved back to the old view, with the actions of bosons and fields.
Newton's laws cover the effects of forces, but not their causes [Newton, by Papineau]
     Full Idea: Newton has a general law about the effects of his forces, ...but there is no corresponding general principle about the causes of such forces.
     From: report of Isaac Newton (Principia Mathematica [1687]) by David Papineau - Thinking about Consciousness App 3
     A reaction: I'm not sure that Einstein gives a cause of gravity either. This seems to be part of the scientific 'instrumentalist' view of nature, which is incredibly useful but very superficial.
Newton's forces were accused of being the scholastics' real qualities [Pasnau on Newton]
     Full Idea: Newton's reliance on the notion of force was widely criticised as marking in effect a return to real qualities.
     From: comment on Isaac Newton (Principia Mathematica [1687]) by Robert Pasnau - Metaphysical Themes 1274-1671 19.7
     A reaction: The objection is to forces that are separate from the bodies they act on. This is one of the reasons why modern metaphysics needs the concept of an intrinsic disposition or power, placing the forces in the stuff.
I am studying the quantities and mathematics of forces, not their species or qualities [Newton]
     Full Idea: I consider in this treatise not the species of forces and their physical qualities, but their quantities and mathematical proportions.
     From: Isaac Newton (Principia Mathematica [1687], 1.1.11 Sch)
     A reaction: Note that Newton is not denying that one might contemplate the species and qualities of forces, as I think Leibniz tried to do, thought he didn't cast any detailed light on them. It is the gap between science and metaphysics.
The aim is to discover forces from motions, and use forces to demonstrate other phenomena [Newton]
     Full Idea: The basic problem of philosophy seems to be to discover the forces of nature from the phenomena of motions and then to demonstrate the other phenomena from these forces.
     From: Isaac Newton (Principia Mathematica [1687], Pref 1st ed), quoted by Daniel Garber - Leibniz:Body,Substance,Monad 4
     A reaction: This fits in with the description-of-regularity approach to laws which Newton had acquired from Galileo, rather than the essentialist attitude to forces of Leibniz, though Newton has smatterings of essentialism.
27. Natural Reality / A. Classical Physics / 1. Mechanics / d. Gravity
Newton showed that falling to earth and orbiting the sun are essentially the same [Newton, by Ellis]
     Full Idea: Newton showed that the apparently different kinds of processes of falling towards the earth and orbiting the sun are essentially the same.
     From: report of Isaac Newton (Principia Mathematica [1687]) by Brian Ellis - Scientific Essentialism 3.08
     A reaction: I quote this to illustrate Newton's permanent achievement in science, in the face of a tendency to say that he was 'outmoded' by the advent of General Relativity. Newton wasn't interestingly wrong. He was very very right.
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / c. Conservation of energy
Early Newtonians could not formulate conservation of energy, having no concept of potential energy [Newton, by Papineau]
     Full Idea: A barrier to the formulation of an energy conservation principle by early Newtonians was their lack of a notion of potential energy.
     From: report of Isaac Newton (Principia Mathematica [1687]) by David Papineau - Thinking about Consciousness App 3 n5
     A reaction: Interestingly, the notions of potentiality and actuality were central to Aristotle, but Newtonians had just rejected all of that.
27. Natural Reality / C. Space / 4. Substantival Space
Absolute space is independent, homogeneous and immovable [Newton]
     Full Idea: Absolute space, of its own nature without reference to anything external, always remains homogeneous and immovable.
     From: Isaac Newton (Principia Mathematica [1687], Def 8 Schol)
     A reaction: This would have to be a stipulation, rather than an assertion of fact, since whether space is 'immovable' is either incoherent or unknowable.
27. Natural Reality / D. Time / 1. Nature of Time / a. Absolute time
Newton needs intervals of time, to define velocity and acceleration [Newton, by Le Poidevin]
     Full Idea: Both Newton's First and Second Laws of motion make implicit reference to equal intervals of time. For a body is moving with constant velocity if it covers the same distance in a series of equal intervals (and similarly with acceleration).
     From: report of Isaac Newton (Principia Mathematica [1687]) by Robin Le Poidevin - Travels in Four Dimensions 01 'Time'
     A reaction: [Le Poidevin spells out the acceleration point] You can see why he needs time to be real, if measured chunks of it figure in his laws.
Newton thought his laws of motion needed absolute time [Newton, by Bardon]
     Full Idea: Newton's reason for embracing absolute space, time and motion was that he thought that universal laws of motions were describable only in such terms. Because actual motions are irregular, the time of universal laws of motion cannot depend on them.
     From: report of Isaac Newton (Principia Mathematica [1687]) by Adrian Bardon - Brief History of the Philosophy of Time 3 'Replacing'
     A reaction: I'm not sure of the Einsteinian account of the laws of motion.
Time exists independently, and flows uniformly [Newton]
     Full Idea: Absolute, true, and mathematical time, in and of itself and of its own nature, without reference to anything external, flows uniformly and by another name is called duration.
     From: Isaac Newton (Principia Mathematica [1687], Def 8 Schol)
     A reaction: This invites the notorious question of, if time flows uniformly, how fast time flows. Maybe we should bite the bullet and say 'one second per second', or maybe we should say 'this fact is beyond our powers of comprehension'.
Absolute time, from its own nature, flows equably, without relation to anything external [Newton]
     Full Idea: Absolute, true, and mathematical time, of itself, and from its own nature, flows equably, without relation to anything external.
     From: Isaac Newton (Principia Mathematica [1687], I:Schol after defs), quoted by Craig Bourne - A Future for Presentism 5.1
     A reaction: I agree totally with this, and I don't care what any modern relativity theorists say. It think Shoemaker's argument gives wonderful support to Newton.
27. Natural Reality / D. Time / 2. Passage of Time / g. Time's arrow
Newtonian mechanics does not distinguish negative from positive values of time [Newton, by Coveney/Highfield]
     Full Idea: In Newton's laws of motion time is squared, so a negative value gives the same result as a positive value, which means Newtonian mechanics cannot distinguish between the two directions of time.
     From: report of Isaac Newton (Principia Mathematica [1687]) by P Coveney / R Highfield - The Arrow of Time 2 'anatomy'
     A reaction: Maybe Newton just forgot to mention that negative values were excluded. (Or was he unaware of the sequence of negative integers?). Too late now - he's done it.
27. Natural Reality / D. Time / 3. Parts of Time / d. Measuring time
If there is no uniform motion, we cannot exactly measure time [Newton]
     Full Idea: It is possible that there is no uniform motion by which time may have an exact measure. All motions can be accelerated and retarded, but the flow of absolute time cannot be changed.
     From: Isaac Newton (Principia Mathematica [1687], Def 8 Schol)
28. God / A. Divine Nature / 3. Divine Perfections
If a perfect being does not rule the cosmos, it is not God [Newton]
     Full Idea: A being, however perfect, without dominion is not the Lord God.
     From: Isaac Newton (Principia Mathematica [1687], Bk 3 Gen Schol)
28. God / B. Proving God / 3. Proofs of Evidence / b. Teleological Proof
The elegance of the solar system requires a powerful intellect as designer [Newton]
     Full Idea: This most elegant system of the sun, planets, and comets could not have arisen without the design and dominion of an intelligent and powerful being.
     From: Isaac Newton (Principia Mathematica [1687], Bk 3 Gen Schol)