Combining Texts

All the ideas for 'The Problem of Empty Names', 'The Rationality of Science' and 'Philosophy of Chemistry'

unexpand these ideas     |    start again     |     specify just one area for these texts


29 ideas

1. Philosophy / G. Scientific Philosophy / 1. Aims of Science
We do not wish merely to predict, we also want to explain [Newton-Smith]
     Full Idea: We do not wish merely to predict, we also want to explain.
     From: W.H. Newton-Smith (The Rationality of Science [1981], II.3)
The real problem of science is how to choose between possible explanations [Newton-Smith]
     Full Idea: Once we move beyond investigating correlations between observables the question of what does or should guide our choice between alternative explanatory accounts becomes problematic.
     From: W.H. Newton-Smith (The Rationality of Science [1981], IX.2)
For science to be rational, we must explain scientific change rationally [Newton-Smith]
     Full Idea: We are only justified in regarding scientific practice as the very paradigm of rationality if we can justify the claim that scientific change is rationally explicable.
     From: W.H. Newton-Smith (The Rationality of Science [1981], I.2)
1. Philosophy / G. Scientific Philosophy / 2. Positivism
Critics attack positivist division between theory and observation [Newton-Smith]
     Full Idea: The critics of positivism attacked the conception of a dichotomy between theory and observation.
     From: W.H. Newton-Smith (The Rationality of Science [1981], I.4)
Positivists hold that theoretical terms change, but observation terms don't [Newton-Smith]
     Full Idea: For positivists it was taken that while theory change meant change in the meaning of theoretical terms, the meaning of observational terms was invariant under theory change.
     From: W.H. Newton-Smith (The Rationality of Science [1981], I.4)
3. Truth / A. Truth Problems / 6. Verisimilitude
More truthful theories have greater predictive power [Newton-Smith]
     Full Idea: If a theory is a better approximation to the truth, then it is likely that it will have greater predictive power.
     From: W.H. Newton-Smith (The Rationality of Science [1981], VIII.8)
Theories generate infinite truths and falsehoods, so they cannot be used to assess probability [Newton-Smith]
     Full Idea: We cannot explicate a useful notion of verisimilitude in terms of the number of truths and the number of falsehoods generated by a theory, because they are infinite.
     From: W.H. Newton-Smith (The Rationality of Science [1981], III.4)
5. Theory of Logic / F. Referring in Logic / 1. Naming / e. Empty names
Unreflectively, we all assume there are nonexistents, and we can refer to them [Reimer]
     Full Idea: As speakers of the language, we unreflectively assume that there are nonexistents, and that reference to them is possible.
     From: Marga Reimer (The Problem of Empty Names [2001], p.499), quoted by Sarah Sawyer - Empty Names 4
     A reaction: Sarah Swoyer quotes this as a good solution to the problem of empty names, and I like it. It introduces a two-tier picture of our understanding of the world, as 'unreflective' and 'reflective', but that seems good. We accept numbers 'unreflectively'.
10. Modality / C. Sources of Modality / 1. Sources of Necessity
De re necessity arises from the way the world is [Newton-Smith]
     Full Idea: A necessary truth is 'de re' if its necessity arises from the way the world is.
     From: W.H. Newton-Smith (The Rationality of Science [1981], VII.6)
11. Knowledge Aims / A. Knowledge / 4. Belief / a. Beliefs
We must assess the truth of beliefs in identifying them [Newton-Smith]
     Full Idea: We cannot determine what someone's beliefs are independently of assessing to some extent the truth or falsity of the beliefs.
     From: W.H. Newton-Smith (The Rationality of Science [1981], X.4)
13. Knowledge Criteria / E. Relativism / 6. Relativism Critique
Defeat relativism by emphasising truth and reference, not meaning [Newton-Smith]
     Full Idea: The challenge of incommensurability can be met once it is realised that in comparing theories the notions of truth and reference are more important than that of meaning.
     From: W.H. Newton-Smith (The Rationality of Science [1981], I.6)
14. Science / A. Basis of Science / 1. Observation
A full understanding of 'yellow' involves some theory [Newton-Smith]
     Full Idea: A full grasp of the concept '…is yellow' involves coming to accept as true bits of theory; that is, generalisations involving the term 'yellow'.
     From: W.H. Newton-Smith (The Rationality of Science [1981], II.2)
14. Science / A. Basis of Science / 5. Anomalies
All theories contain anomalies, and so are falsified! [Newton-Smith]
     Full Idea: According to Feyerabend all theories are born falsified, because no theory has ever been totally free of anomalies.
     From: W.H. Newton-Smith (The Rationality of Science [1981], III.9)
The anomaly of Uranus didn't destroy Newton's mechanics - it led to Neptune's discovery [Newton-Smith]
     Full Idea: When scientists observed the motion of Uranus, they did not give up on Newtonian mechanics. Instead they posited the existence of Neptune.
     From: W.H. Newton-Smith (The Rationality of Science [1981], III.9)
Anomalies are judged against rival theories, and support for the current theory [Newton-Smith]
     Full Idea: Whether to reject an anomaly has to be decided on the basis of the availability of a rival theory, and on the basis of the positive evidence for the theory in question.
     From: W.H. Newton-Smith (The Rationality of Science [1981], III.9)
14. Science / B. Scientific Theories / 1. Scientific Theory
Why should it matter whether or not a theory is scientific? [Newton-Smith]
     Full Idea: Why should it be so important to distinguish between theories that are scientific and those that are not?
     From: W.H. Newton-Smith (The Rationality of Science [1981], IV.3)
14. Science / B. Scientific Theories / 5. Commensurability
If theories are really incommensurable, we could believe them all [Newton-Smith]
     Full Idea: If theories are genuinely incommensurable why should I be faced with the problem of choosing between them? Why not believe them all?
     From: W.H. Newton-Smith (The Rationality of Science [1981], VII.1)
14. Science / D. Explanation / 2. Types of Explanation / i. Explanations by mechanism
Thick mechanisms map whole reactions, and thin mechanism chart the steps [Weisberg/Needham/Hendry]
     Full Idea: In chemistry the 'thick' notion of a mechanism traces out positions of electrons and atomic cores, and correlates them with energies, showing the whole reaction. 'Thin' mechanisms focus on a discrete set of intermediate steps.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 5.1)
Using mechanisms as explanatory schemes began in chemistry [Weisberg/Needham/Hendry]
     Full Idea: The production of mechanisms as explanatory schemes finds its original home in chemistry.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 5.1)
     A reaction: This is as opposed to mechanisms in biology or neuroscience, which come later.
20. Action / C. Motives for Action / 3. Acting on Reason / c. Reasons as causes
Explaining an action is showing that it is rational [Newton-Smith]
     Full Idea: To explain an action as an action is to show that it is rational.
     From: W.H. Newton-Smith (The Rationality of Science [1981], X.2)
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / f. Ancient elements
Lavoisier's elements included four types of earth [Weisberg/Needham/Hendry]
     Full Idea: Four types of earth found a place on Lavoisier's list of elements.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 1.2)
     A reaction: A nice intermediate point between the ancient Greek and the modern view of earth.
27. Natural Reality / F. Chemistry / 1. Chemistry
Over 100,000,000 compounds have been discovered or synthesised [Weisberg/Needham/Hendry]
     Full Idea: There are well over 100,000,000 chemical compounds that have been discovered or synthesised, all of which have been formally characterised.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 4.3)
Water molecules dissociate, and form large polymers, explaining its properties [Weisberg/Needham/Hendry]
     Full Idea: Water's structure cannot simply be described as a collection of individual molecules. There is a continual dissociation of H2O molecules into hydrogen and hydroxide ions; they former larger polymeric species, explaining conductivity, melting and boiling.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 4.5)
     A reaction: [compressed] If philosophers try to state the 'essence of water', they had better not be too glib about it.
It is unlikely that chemistry will ever be reduced to physics [Weisberg/Needham/Hendry]
     Full Idea: Most philosophers believe chemistry has not been reduced to physics nor is it likely to be.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 6)
     A reaction: [Le Poidevin 2007 argues the opposite] That chemical features are actually metaphysically 'emergent' is a rare view, defended by Hendry. The general view is that the concepts are too different, and approximations render it hopeless.
Quantum theory won't tell us which structure a set of atoms will form [Weisberg/Needham/Hendry]
     Full Idea: Quantum mechanics cannot tell us why a given collection of atoms will adopt one molecular structure (and set of chemical properties) or the other.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 6.1)
     A reaction: Presumably it the 'chance' process of how the atoms are thrown together.
For temperature to be mean kinetic energy, a state of equilibrium is also required [Weisberg/Needham/Hendry]
     Full Idea: Having a particular average kinetic energy is only a necessary condition for having a given temperature, not a sufficient one, because only gases at equilibrium have a well-defined temperature.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 6.2)
     A reaction: If you try to pin it all down more precisely, the definition turns out to be circular.
'H2O' just gives the element proportions, not the microstructure [Weisberg/Needham/Hendry]
     Full Idea: 'H2O' is not a description of any microstructure. It is a compositional formula, describing the combining proportions of hydrogen and oxygen to make water.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 4.5)
27. Natural Reality / F. Chemistry / 2. Modern Elements
Isotopes (such as those of hydrogen) can vary in their rates of chemical reaction [Weisberg/Needham/Hendry]
     Full Idea: There are chemically salient differences among the isotopes, best illustrated by the three isotopes of hydrogen: protium, deuterium and tritium, which show different rates of reaction, making heavy water poisonous where ordinary water is not.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 1.4)
     A reaction: [They cite Paul Needham 2008] The point is that the isotopes are the natural kinds, rather than the traditional elements. The view is unorthodox, but clearly makes a good point.
27. Natural Reality / F. Chemistry / 3. Periodic Table
Mendeleev systematised the elements, and also gave an account of their nature [Weisberg/Needham/Hendry]
     Full Idea: In addition to providing the systematization of the elements used in modern chemistry, Mendeleev also gave an account of the nature of the elements which informs contemporary philosophical understanding.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 1.3)