Combining Texts

All the ideas for 'Externalism', 'Three theses about dispositions' and 'Naturalism in Mathematics'

unexpand these ideas     |    start again     |     specify just one area for these texts


43 ideas

1. Philosophy / H. Continental Philosophy / 4. Linguistic Structuralism
Structuralism is neo-Kantian idealism, with language playing the role of categories of understanding [Rowlands]
     Full Idea: Structuralism is a form of neo-Kantian idealism, in which the job of creating Kant's phenomenal world has been taken over by language instead of forms of sensibility and categories of the understanding.
     From: Mark Rowlands (Externalism [2003], Ch.3)
     A reaction: A helpful connection, which explains my aversion to any attempt at understanding the world simply by analysing language, either in its ordinary usage, or in its underlying logical form.
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
'Forcing' can produce new models of ZFC from old models [Maddy]
     Full Idea: Cohen's method of 'forcing' produces a new model of ZFC from an old model by appending a carefully chosen 'generic' set.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
A Large Cardinal Axiom would assert ever-increasing stages in the hierarchy [Maddy]
     Full Idea: A possible axiom is the Large Cardinal Axiom, which asserts that there are more and more stages in the cumulative hierarchy. Infinity can be seen as the first of these stages, and Replacement pushes further in this direction.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Axiom of Infinity: completed infinite collections can be treated mathematically [Maddy]
     Full Idea: The axiom of infinity: that there are infinite sets is to claim that completed infinite collections can be treated mathematically. In its standard contemporary form, the axioms assert the existence of the set of all finite ordinals.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.3)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
The Axiom of Foundation says every set exists at a level in the set hierarchy [Maddy]
     Full Idea: In the presence of other axioms, the Axiom of Foundation is equivalent to the claim that every set is a member of some Vα.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.3)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Axiom of Reducibility: propositional functions are extensionally predicative [Maddy]
     Full Idea: The Axiom of Reducibility states that every propositional function is extensionally equivalent to some predicative proposition function.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
5. Theory of Logic / D. Assumptions for Logic / 1. Bivalence
If bivalence is rejected, then excluded middle must also be rejected [Rowlands]
     Full Idea: If you reject the principle of bivalence (that a proposition is either determinately true or false), then statements are also not subject to the Law of Excluded Middle (P or not-P).
     From: Mark Rowlands (Externalism [2003], Ch.3)
     A reaction: I think Rowlands is wrong about this. Excluded Middle could be purely syntacti, or its semantics could be 'True or Not-True'. Only bivalent excluded middle introduces 'True or False'. Compare Idea 4752.
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
'Propositional functions' are propositions with a variable as subject or predicate [Maddy]
     Full Idea: A 'propositional function' is generated when one of the terms of the proposition is replaced by a variable, as in 'x is wise' or 'Socrates'.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: This implies that you can only have a propositional function if it is derived from a complete proposition. Note that the variable can be in either subject or in predicate position. It extends Frege's account of a concept as 'x is F'.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Completed infinities resulted from giving foundations to calculus [Maddy]
     Full Idea: The line of development that finally led to a coherent foundation for the calculus also led to the explicit introduction of completed infinities: each real number is identified with an infinite collection of rationals.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.3)
     A reaction: Effectively, completed infinities just are the real numbers.
Cantor and Dedekind brought completed infinities into mathematics [Maddy]
     Full Idea: Both Cantor's real number (Cauchy sequences of rationals) and Dedekind's cuts involved regarding infinite items (sequences or sets) as completed and subject to further manipulation, bringing the completed infinite into mathematics unambiguously.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1 n39)
     A reaction: So it is the arrival of the real numbers which is the culprit for lumbering us with weird completed infinites, which can then be the subject of addition, multiplication and exponentiation. Maybe this was a silly mistake?
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Infinity has degrees, and large cardinals are the heart of set theory [Maddy]
     Full Idea: The stunning discovery that infinity comes in different degrees led to the theory of infinite cardinal numbers, the heart of contemporary set theory.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: It occurs to me that these huge cardinals only exist in set theory. If you took away that prop, they would vanish in a puff.
For any cardinal there is always a larger one (so there is no set of all sets) [Maddy]
     Full Idea: By the mid 1890s Cantor was aware that there could be no set of all sets, as its cardinal number would have to be the largest cardinal number, while his own theorem shows that for any cardinal there is a larger.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: There is always a larger cardinal because of the power set axiom. Some people regard that with suspicion.
An 'inaccessible' cardinal cannot be reached by union sets or power sets [Maddy]
     Full Idea: An 'inaccessible' cardinal is one that cannot be reached by taking unions of small collections of smaller sets or by taking power sets.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.5)
     A reaction: They were introduced by Hausdorff in 1908.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / l. Limits
Theorems about limits could only be proved once the real numbers were understood [Maddy]
     Full Idea: Even the fundamental theorems about limits could not [at first] be proved because the reals themselves were not well understood.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: This refers to the period of about 1850 (Weierstrass) to 1880 (Dedekind and Cantor).
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
The extension of concepts is not important to me [Maddy]
     Full Idea: I attach no decisive importance even to bringing in the extension of the concepts at all.
     From: Penelope Maddy (Naturalism in Mathematics [1997], §107)
     A reaction: He almost seems to equate the concept with its extension, but that seems to raise all sorts of questions, about indeterminate and fluctuating extensions.
In the ZFC hierarchy it is impossible to form Frege's set of all three-element sets [Maddy]
     Full Idea: In the ZFC cumulative hierarchy, Frege's candidates for numbers do not exist. For example, new three-element sets are formed at every stage, so there is no stage at which the set of all three-element sets could he formed.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: Ah. This is a very important fact indeed if you are trying to understand contemporary discussions in philosophy of mathematics.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Frege solves the Caesar problem by explicitly defining each number [Maddy]
     Full Idea: To solve the Julius Caesar problem, Frege requires explicit definitions of the numbers, and he proposes his well-known solution: the number of Fs = the extension of the concept 'equinumerous with F' (based on one-one correspondence).
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: Why do there have to be Fs before there can be the corresponding number? If there were no F for 523, would that mean that '523' didn't exist (even if 522 and 524 did exist)?
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Making set theory foundational to mathematics leads to very fruitful axioms [Maddy]
     Full Idea: The set theory axioms developed in producing foundations for mathematics also have strong consequences for existing fields, and produce a theory that is immensely fruitful in its own right.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: [compressed] Second of Maddy's three benefits of set theory. This benefit is more questionable than the first, because the axioms may be invented because of their nice fruit, instead of their accurate account of foundations.
Unified set theory gives a final court of appeal for mathematics [Maddy]
     Full Idea: The single unified area of set theory provides a court of final appeal for questions of mathematical existence and proof.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: Maddy's third benefit of set theory. 'Existence' means being modellable in sets, and 'proof' means being derivable from the axioms. The slightly ad hoc character of the axioms makes this a weaker defence.
Set theory brings mathematics into one arena, where interrelations become clearer [Maddy]
     Full Idea: Set theoretic foundations bring all mathematical objects and structures into one arena, allowing relations and interactions between them to be clearly displayed and investigated.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: The first of three benefits of set theory which Maddy lists. The advantages of the one arena seem to be indisputable.
Mathematics rests on the logic of proofs, and on the set theoretic axioms [Maddy]
     Full Idea: Our much loved mathematical knowledge rests on two supports: inexorable deductive logic (the stuff of proof), and the set theoretic axioms.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I Intro)
Identifying geometric points with real numbers revealed the power of set theory [Maddy]
     Full Idea: The identification of geometric points with real numbers was among the first and most dramatic examples of the power of set theoretic foundations.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: Hence the clear definition of the reals by Dedekind and Cantor was the real trigger for launching set theory.
The line of rationals has gaps, but set theory provided an ordered continuum [Maddy]
     Full Idea: The structure of a geometric line by rational points left gaps, which were inconsistent with a continuous line. Set theory provided an ordering that contained no gaps. These reals are constructed from rationals, which come from integers and naturals.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: This completes the reduction of geometry to arithmetic and algebra, which was launch 250 years earlier by Descartes.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Maybe applications of continuum mathematics are all idealisations [Maddy]
     Full Idea: It could turn out that all applications of continuum mathematics in natural sciences are actually instances of idealisation.
     From: Penelope Maddy (Naturalism in Mathematics [1997], II.6)
Scientists posit as few entities as possible, but set theorist posit as many as possible [Maddy]
     Full Idea: Crudely, the scientist posits only those entities without which she cannot account for observations, while the set theorist posits as many entities as she can, short of inconsistency.
     From: Penelope Maddy (Naturalism in Mathematics [1997], II.5)
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
We can get arithmetic directly from HP; Law V was used to get HP from the definition of number [Maddy]
     Full Idea: Recent commentators have noted that Frege's versions of the basic propositions of arithmetic can be derived from Hume's Principle alone, that the fatal Law V is only needed to derive Hume's Principle itself from the definition of number.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: Crispin Wright is the famous exponent of this modern view. Apparently Charles Parsons (1965) first floated the idea.
7. Existence / C. Structure of Existence / 5. Supervenience / a. Nature of supervenience
Supervenience is a one-way relation of dependence or determination between properties [Rowlands]
     Full Idea: Supervenience is essentially a one-way relation of dependence or determination, …which holds, in the first instance, between properties.
     From: Mark Rowlands (Externalism [2003], Ch.2)
     A reaction: This definition immediately shows why supervenient properties are in danger of being epiphenomenal (i.e. causally irrelevant). Carefully thought about the notion of a 'one-way' relation will, I think, make it more obscure rather than clearer.
7. Existence / D. Theories of Reality / 11. Ontological Commitment / e. Ontological commitment problems
The theoretical indispensability of atoms did not at first convince scientists that they were real [Maddy]
     Full Idea: The case of atoms makes it clear that the indispensable appearance of an entity in our best scientific theory is not generally enough to convince scientists that it is real.
     From: Penelope Maddy (Naturalism in Mathematics [1997], II.6)
     A reaction: She refers to the period between Dalton and Einstein, when theories were full of atoms, but there was strong reluctance to actually say that they existed, until the direct evidence was incontrovertable. Nice point.
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
It is argued that wholes possess modal and counterfactual properties that parts lack [Rowlands]
     Full Idea: Some have argued that a mereological whole should not be identified with the sum of its parts on the grounds that the former possess certain properties - specifically modal and (perhaps) counterfactual properties - that the latter lacks.
     From: Mark Rowlands (Externalism [2003], Ch.2)
     A reaction: I am not convinced that modal and counterfactual claims should count as properties. If my pen is heated it melts (a property), but if my pen were intelligent it could do philosophy. Intelligence is a property, but the situation isn't.
9. Objects / F. Identity among Objects / 4. Type Identity
Tokens are dated, concrete particulars; types are their general properties or kinds [Rowlands]
     Full Idea: Tokens are dated, concrete, particular occurrences or instances; types are the general properties that these occurrences exemplify or the kinds to which they belong.
     From: Mark Rowlands (Externalism [2003], Ch.2)
     A reaction: It might be said that types are sets, of which tokens are the members. The question of 'general properties' raises the question of whether universals must exist to make kinds possible.
11. Knowledge Aims / C. Knowing Reality / 3. Idealism / a. Idealism
Strong idealism is the sort of mess produced by a Cartesian separation of mind and world [Rowlands]
     Full Idea: Neo-Kantian idealism, and the excesses of recent versions of it, are precisely the sort of mess one can get oneself into through an uncritical acceptance of the dichotomizing of mind and world along Cartesian internalist lines.
     From: Mark Rowlands (Externalism [2003], Ch.3)
     A reaction: I am unconvinced that internalism about the mind (that its contents can be defined without reference to anything external) leads to this disastrous split. We don't have to abandon the links between an internal mind and the world.
15. Nature of Minds / A. Nature of Mind / 1. Mind / c. Features of mind
Minds are rational, conscious, subjective, self-knowing, free, meaningful and self-aware [Rowlands]
     Full Idea: The apparent features of mind which are not obviously physical include: rationality, thought, consciousness, subjectivity, infallible first-person knowledge, freedom, meaning and self-awareness.
     From: Mark Rowlands (Externalism [2003], Ch.2)
     A reaction: A helpful list, some of which can be challenged. Ryle challenges first-person infallibility. Hume challenges self-awareness. Quine challenges meaning. Lots of people (e.g. Spinoza) challenge freedom. The Churchlands seem to challenge consciousness.
15. Nature of Minds / A. Nature of Mind / 6. Anti-Individualism
Content externalism implies that we do not have privileged access to our own minds [Rowlands]
     Full Idea: Content externalism threatens the idea of first-person authority in all its forms, and does so because it calls into question the idea that the access we have to our own mental states is privileged in the way required for such authority.
     From: Mark Rowlands (Externalism [2003], Ch.7)
     A reaction: I am inclined to respond by saying that since we clearly have privileged access to our own minds, that means there must be something wrong with content externalism.
If someone is secretly transported to Twin Earth, others know their thoughts better than they do [Rowlands]
     Full Idea: If someone knew that a thinker had, without realising it, been transported to Twin Earth, they would almost certainly be a higher authority on the content of the thinker's thoughts than would the thinker.
     From: Mark Rowlands (Externalism [2003], Ch.8)
     A reaction: They would certainly be a higher authority on the truth of the thinker's thoughts, but only in the way that you might think I hold a diamond when I know it is a club. If the thinker believes it is H2O, the fact that it isn't is irrelevant to content.
15. Nature of Minds / C. Capacities of Minds / 6. Idealisation
Science idealises the earth's surface, the oceans, continuities, and liquids [Maddy]
     Full Idea: In science we treat the earth's surface as flat, we assume the ocean to be infinitely deep, we use continuous functions for what we know to be quantised, and we take liquids to be continuous despite atomic theory.
     From: Penelope Maddy (Naturalism in Mathematics [1997], II.6)
     A reaction: If fussy people like scientists do this all the time, how much more so must the confused multitude be doing the same thing all day?
17. Mind and Body / B. Behaviourism / 2. Potential Behaviour
Dispositions are second-order properties, the property of having some property [Jackson/Pargetter/Prior, by Armstrong]
     Full Idea: It was proposed that dispositions are second-order properties of objects: the property of having some property.
     From: report of Jackson/Pargetter/Prior (Three theses about dispositions [1982]) by David M. Armstrong - Pref to new 'Materialist Theory' p.xvii
     A reaction: It seems more plausible to say that dispositions are first-order properties - that is, properties are dispositions, which are causal powers. A disposition to smoke is to have a causal power which leads to smoking.
17. Mind and Body / D. Property Dualism / 5. Supervenience of mind
Supervenience of mental and physical properties often comes with token-identity of mental and physical particulars [Rowlands]
     Full Idea: One often finds a supervenience thesis concerning the relation between mental and physical properties combined with a token identity theory concerning the relation between mental and physical particulars.
     From: Mark Rowlands (Externalism [2003], Ch.2)
     A reaction: This brings out the important clarifying point that supervenience is said to be between properties, not substances. The point is that supervenience will always cry out for an explanation, preferably a sensible one.
18. Thought / C. Content / 1. Content
The content of a thought is just the meaning of a sentence [Rowlands]
     Full Idea: The content of the thought that the sky is blue is simply the meaning of the sentence "The sky is blue".
     From: Mark Rowlands (Externalism [2003], Ch.5)
     A reaction: This seems to imply that it is logically impossible for a non-language-speaker, such as a chimpanzee, to think that the sky is the same colour as the water. If we allow propositions, we might be able to keep meanings without the sentences.
20. Action / A. Definition of Action / 4. Action as Movement
Action is bodily movement caused by intentional states [Rowlands]
     Full Idea: An action is a bodily movement that is caused by intentional states such as beliefs, desires and so on.
     From: Mark Rowlands (Externalism [2003], Ch.5)
     A reaction: A useful definition, and clearly one that has no truck with attempts at giving behaviourist definitions of action. The definition of a 'moral action' needs to be built on this one. Particular types of belief and desire, presumably.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / c. Ethical intuitionism
Moral intuition seems unevenly distributed between people [Rowlands]
     Full Idea: The faculty of moral intuition seems to be unevenly distributed between people.
     From: Mark Rowlands (Externalism [2003], Ch.11)
     A reaction: This would be a good argument if it was thought that the source of moral intuitions was divine, but people vary enormously in their intuitions about maths, about character, about danger. If you believe in any intuition at all, you must accept its variety.
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / g. Atomism
The 17th century reintroduced atoms as mathematical modes of Euclidean space [Rowlands]
     Full Idea: The seventeenth century revolution reintroduced the classical concept of the atom in somewhat new attire as an essentially mathematical entity whose primary qualities could be precisely quantified as modes or aspects of Euclidean space.
     From: Mark Rowlands (Externalism [2003], Ch.2)
     A reaction: Obviously this very abstract view of atoms didn't last, once they began to identify specific physical atoms, such as oxygen. This view fits in with Newton's use of pure (abstract) points such as the 'centre of gravity'.
26. Natural Theory / B. Natural Kinds / 2. Defining Kinds
Natural kinds are defined by their real essence, as in gold having atomic number 79 [Rowlands]
     Full Idea: Part of what it means to be a natural kind is that they are defined by a real essence, a constitution that marks them out as the substance they are (as water is essentially H2O, and gold essentially has atomic number 79).
     From: Mark Rowlands (Externalism [2003], Ch.6)
     A reaction: A 'real essence' would be the opposite of a 'conventional essence', which is just a human way of seeing things.
27. Natural Reality / G. Biology / 4. Ecology
It is common to see the value of nature in one feature, such as life, diversity, or integrity [Rowlands]
     Full Idea: In recent environmental philosophy it is common to see the value of nature identified with one or another natural feature of the environment: life, diversity, ecosystemic integrity and so on.
     From: Mark Rowlands (Externalism [2003], Ch.11)
     A reaction: This thought seems to be asking for the Open Question argument. What is so good about life, or diversity? Our strongest intuition must be that the survival of the ecosystem, and whatever makes that possible, is the highest value.