Combining Texts

All the ideas for 'Intensional Logic', '17: Epistle to Titus' and 'Mathematics is Megethology'

unexpand these ideas     |    start again     |     specify just one area for these texts


19 ideas

4. Formal Logic / E. Nonclassical Logics / 8. Intensional Logic
If terms change their designations in different states, they are functions from states to objects [Fitting]
     Full Idea: The common feature of every designating term is that designation may change from state to state - thus it can be formalized by a function from states to objects.
     From: Melvin Fitting (Intensional Logic [2007], 3)
     A reaction: Specifying the objects sounds OK, but specifying states sounds rather tough.
Intensional logic adds a second type of quantification, over intensional objects, or individual concepts [Fitting]
     Full Idea: To first order modal logic (with quantification over objects) we can add a second kind of quantification, over intensions. An intensional object, or individual concept, will be modelled by a function from states to objects.
     From: Melvin Fitting (Intensional Logic [2007], 3.3)
4. Formal Logic / E. Nonclassical Logics / 9. Awareness Logic
Awareness logic adds the restriction of an awareness function to epistemic logic [Fitting]
     Full Idea: Awareness logic enriched Hintikka's epistemic models with an awareness function, mapping each state to the set of formulas we are aware of at that state. This reflects some bound on the resources we can bring to bear.
     From: Melvin Fitting (Intensional Logic [2007], 3.6.1)
     A reaction: [He cites Fagin and Halpern 1988 for this]
4. Formal Logic / E. Nonclassical Logics / 10. Justification Logics
Justication logics make explicit the reasons for mathematical truth in proofs [Fitting]
     Full Idea: In justification logics, the logics of knowledge are extended by making reasons explicit. A logic of proof terms was created, with a semantics. In this, mathematical truths are known for explicit reasons, and these provide a measure of complexity.
     From: Melvin Fitting (Intensional Logic [2007], 3.6.1)
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematics reduces to set theory, which reduces, with some mereology, to the singleton function [Lewis]
     Full Idea: It is generally accepted that mathematics reduces to set theory, and I argue that set theory in turn reduces, with some aid of mereology, to the theory of the singleton function.
     From: David Lewis (Mathematics is Megethology [1993], p.03)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
We can accept the null set, but not a null class, a class lacking members [Lewis]
     Full Idea: In my usage of 'class', there is no such things as the null class. I don't mind calling some memberless thing - some individual - the null set. But that doesn't make it a memberless class. Rather, that makes it a 'set' that is not a class.
     From: David Lewis (Mathematics is Megethology [1993], p.05)
     A reaction: Lewis calls this usage 'idiosyncratic', but it strikes me as excellent. Set theorists can have their vital null class, and sensible people can be left to say, with Lewis, that classes of things must have members.
The null set plays the role of last resort, for class abstracts and for existence [Lewis]
     Full Idea: The null set serves two useful purposes. It is a denotation of last resort for class abstracts that denote no nonempty class. And it is an individual of last resort: we can count on its existence, and fearlessly build the hierarchy of sets from it.
     From: David Lewis (Mathematics is Megethology [1993], p.09)
     A reaction: This passage assuages my major reservation about the existence of the null set, but at the expense of confirming that it must be taken as an entirely fictional entity.
The null set is not a little speck of sheer nothingness, a black hole in Reality [Lewis]
     Full Idea: Should we accept the null set as a most extraordinary individual, a little speck of sheer nothingness, a sort of black hole in the fabric of Reality itself? Not that either, I think.
     From: David Lewis (Mathematics is Megethology [1993], p.09)
     A reaction: Correct!
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
What on earth is the relationship between a singleton and an element? [Lewis]
     Full Idea: A new student of set theory has just one thing, the element, and he has another single thing, the singleton, and not the slightest guidance about what one thing has to do with the other.
     From: David Lewis (Mathematics is Megethology [1993], p.12)
Are all singletons exact intrinsic duplicates? [Lewis]
     Full Idea: Are all singletons exact intrinsic duplicates?
     From: David Lewis (Mathematics is Megethology [1993], p.13)
4. Formal Logic / G. Formal Mereology / 1. Mereology
Megethology is the result of adding plural quantification to mereology [Lewis]
     Full Idea: Megethology is the result of adding plural quantification, as advocated by George Boolos, to the language of mereology.
     From: David Lewis (Mathematics is Megethology [1993], p.03)
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
Classical logic is deliberately extensional, in order to model mathematics [Fitting]
     Full Idea: Mathematics is typically extensional throughout (we write 3+2=2+3 despite the two terms having different meanings). ..Classical first-order logic is extensional by design since it primarily evolved to model the reasoning of mathematics.
     From: Melvin Fitting (Intensional Logic [2007], §1)
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
We can use mereology to simulate quantification over relations [Lewis]
     Full Idea: We can simulate quantification over relations using megethology. Roughly, a quantifier over relations is a plural quantifier over things that encode ordered pairs by mereological means.
     From: David Lewis (Mathematics is Megethology [1993], p.18)
     A reaction: [He credits this idea to Burgess and Haven] The point is to avoid second-order logic, which quantifies over relations as ordered n-tuple sets.
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
λ-abstraction disambiguates the scope of modal operators [Fitting]
     Full Idea: λ-abstraction can be used to abstract and disambiguate a predicate. De re is [λx◊P(x)](f) - f has the possible-P property - and de dicto is ◊[λxP(x)](f) - possibly f has the P-property. Also applies to □.
     From: Melvin Fitting (Intensional Logic [2007], §3.3)
     A reaction: Compare the Barcan formula. Originated with Church in the 1930s, and Carnap 1947, but revived by Stalnaker and Thomason 1968. Because it refers to the predicate, it has a role in intensional versions of logic, especially modal logic.
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
One of their own prophets said that Cretans are always liars [Anon (Titus)]
     Full Idea: One of themselves, even a prophet of their own, said, the Cretians are always liars, evil beasts, slow bellies. This witness is true.
     From: Anon (Titus) (17: Epistle to Titus [c.115], I.12)
     A reaction: The classic statement of the paradox, the word 'always' being the source of the problem.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Mathematics is generalisations about singleton functions [Lewis]
     Full Idea: We can take the theory of singleton functions, and hence set theory, and hence mathematics, to consist of generalisations about all singleton functions.
     From: David Lewis (Mathematics is Megethology [1993], p.03)
     A reaction: At first glance this sounds like a fancy version of the somewhat discredited Greek idea that mathematics is built on the concept of a 'unit'.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
We don't need 'abstract structures' to have structural truths about successor functions [Lewis]
     Full Idea: We needn't believe in 'abstract structures' to have general structural truths about all successor functions.
     From: David Lewis (Mathematics is Megethology [1993], p.16)
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
I say that absolutely any things can have a mereological fusion [Lewis]
     Full Idea: I accept the principle of Unrestricted Composition: whenever there are some things, no matter how many or how unrelated or how disparate in character they may be, they have a mereological fusion. ...The trout-turkey is part fish and part fowl.
     From: David Lewis (Mathematics is Megethology [1993], p.07)
     A reaction: This nicely ducks the question of when things form natural wholes and when they don't, but I would have thought that that might be one of the central issues of metaphysicals, so I think I'll give Lewis's principle a miss.
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
Definite descriptions pick out different objects in different possible worlds [Fitting]
     Full Idea: Definite descriptions pick out different objects in different possible worlds quite naturally.
     From: Melvin Fitting (Intensional Logic [2007], 3.4)
     A reaction: A definite description can pick out the same object in another possible world, or a very similar one, or an object which has almost nothing in common with the others.