Combining Texts

All the ideas for 'Intensional Logic', 'On the Heavens' and 'Laws in Nature'

unexpand these ideas     |    start again     |     specify just one area for these texts


43 ideas

1. Philosophy / D. Nature of Philosophy / 6. Hopes for Philosophy
Science studies phenomena, but only metaphysics tells us what exists [Mumford]
     Full Idea: Science deals with the phenomena, ..but it is metaphysics, and only metaphysics, that tells us what ultimately exists.
     From: Stephen Mumford (Laws in Nature [2004], 01.2)
2. Reason / A. Nature of Reason / 1. On Reason
Many forms of reasoning, such as extrapolation and analogy, are useful but deductively invalid [Mumford]
     Full Idea: There are many forms of reasoning - extrapolation, interpolation, and other arguments from analogy - that are useful but deductively invalid.
     From: Stephen Mumford (Laws in Nature [2004], 04.4)
     A reaction: [He cites Molnar for this]
2. Reason / A. Nature of Reason / 9. Limits of Reason
A very hungry man cannot choose between equidistant piles of food [Aristotle]
     Full Idea: The man who, though exceedingly hungry and thirsty, and both equally, yet being equidistant from food and drink, is therefore bound to stay where he is.
     From: Aristotle (On the Heavens [c.336 BCE], 296b33)
     A reaction: This is, of course, Buridan's famous Ass, but this quotation has the advantage of precedence, and also of being expressed in an original quotation (which does not exist for Buridan).
4. Formal Logic / E. Nonclassical Logics / 8. Intensional Logic
If terms change their designations in different states, they are functions from states to objects [Fitting]
     Full Idea: The common feature of every designating term is that designation may change from state to state - thus it can be formalized by a function from states to objects.
     From: Melvin Fitting (Intensional Logic [2007], 3)
     A reaction: Specifying the objects sounds OK, but specifying states sounds rather tough.
Intensional logic adds a second type of quantification, over intensional objects, or individual concepts [Fitting]
     Full Idea: To first order modal logic (with quantification over objects) we can add a second kind of quantification, over intensions. An intensional object, or individual concept, will be modelled by a function from states to objects.
     From: Melvin Fitting (Intensional Logic [2007], 3.3)
4. Formal Logic / E. Nonclassical Logics / 9. Awareness Logic
Awareness logic adds the restriction of an awareness function to epistemic logic [Fitting]
     Full Idea: Awareness logic enriched Hintikka's epistemic models with an awareness function, mapping each state to the set of formulas we are aware of at that state. This reflects some bound on the resources we can bring to bear.
     From: Melvin Fitting (Intensional Logic [2007], 3.6.1)
     A reaction: [He cites Fagin and Halpern 1988 for this]
4. Formal Logic / E. Nonclassical Logics / 10. Justification Logics
Justication logics make explicit the reasons for mathematical truth in proofs [Fitting]
     Full Idea: In justification logics, the logics of knowledge are extended by making reasons explicit. A logic of proof terms was created, with a semantics. In this, mathematical truths are known for explicit reasons, and these provide a measure of complexity.
     From: Melvin Fitting (Intensional Logic [2007], 3.6.1)
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
Classical logic is deliberately extensional, in order to model mathematics [Fitting]
     Full Idea: Mathematics is typically extensional throughout (we write 3+2=2+3 despite the two terms having different meanings). ..Classical first-order logic is extensional by design since it primarily evolved to model the reasoning of mathematics.
     From: Melvin Fitting (Intensional Logic [2007], §1)
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
λ-abstraction disambiguates the scope of modal operators [Fitting]
     Full Idea: λ-abstraction can be used to abstract and disambiguate a predicate. De re is [λx◊P(x)](f) - f has the possible-P property - and de dicto is ◊[λxP(x)](f) - possibly f has the P-property. Also applies to □.
     From: Melvin Fitting (Intensional Logic [2007], §3.3)
     A reaction: Compare the Barcan formula. Originated with Church in the 1930s, and Carnap 1947, but revived by Stalnaker and Thomason 1968. Because it refers to the predicate, it has a role in intensional versions of logic, especially modal logic.
7. Existence / A. Nature of Existence / 1. Nature of Existence
For Humeans the world is a world primarily of events [Mumford]
     Full Idea: For Humeans the world is a world primarily of events.
     From: Stephen Mumford (Laws in Nature [2004], 03.6)
8. Modes of Existence / C. Powers and Dispositions / 2. Powers as Basic
Properties are just natural clusters of powers [Mumford]
     Full Idea: The view of properties I find most attractive is one in which they are natural clusters of, and exhausted by, powers (plus other connections to other properties).
     From: Stephen Mumford (Laws in Nature [2004], 10.6)
8. Modes of Existence / E. Nominalism / 1. Nominalism / a. Nominalism
A 'porridge' nominalist thinks we just divide reality in any way that suits us [Mumford]
     Full Idea: A 'porridge' nominalist denies natural kinds, and thinks there are no objective divisions in reality, so concepts or words can be used by a community to divide the world up in any way that suits their purposes.
     From: Stephen Mumford (Laws in Nature [2004], 07.3)
8. Modes of Existence / E. Nominalism / 2. Resemblance Nominalism
If properties are clusters of powers, this can explain why properties resemble in degrees [Mumford]
     Full Idea: If a cluster of ten powers exhausts property F, and property G differs in respect of just one power, this might explain why properties can resemble other properties and in different degrees.
     From: Stephen Mumford (Laws in Nature [2004], 10.6)
     A reaction: I love this. The most intractable problem about properties and universals is that of abstract reference - pink resembles red more than pink resembles green. If colours are clusters of powers, red and pink share nine out of ten of them.
9. Objects / D. Essence of Objects / 14. Knowledge of Essences
How can we show that a universally possessed property is an essential property? [Mumford]
     Full Idea: Essentialists fail to show how we ascend from being a property universally possessed, by all kind members, to the status of being an essential property.
     From: Stephen Mumford (Laws in Nature [2004], 07.5)
     A reaction: This is precisely where my proposal comes in - the essential properties, as opposed to the accidentaly universals, are those which explain the nature and behaviour of each kind of thing (and each individual thing).
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
Definite descriptions pick out different objects in different possible worlds [Fitting]
     Full Idea: Definite descriptions pick out different objects in different possible worlds quite naturally.
     From: Melvin Fitting (Intensional Logic [2007], 3.4)
     A reaction: A definite description can pick out the same object in another possible world, or a very similar one, or an object which has almost nothing in common with the others.
22. Metaethics / B. Value / 2. Values / b. Successful function
Each thing that has a function is for the sake of that function [Aristotle]
     Full Idea: Each thing that has a function is for the sake of that function.
     From: Aristotle (On the Heavens [c.336 BCE], 286a08)
     A reaction: This is the central idea of Aristotle's Ethics. Did it originate with Plato, or Socrates, the young pupil Aristotle? I suspect the strong influence of Aristotle on later Plato. A major idea. Functions link the facts to life.
26. Natural Theory / A. Speculations on Nature / 2. Natural Purpose / a. Final purpose
An unworn sandal is in vain, but nothing in nature is in vain [Aristotle]
     Full Idea: We say of a sandal which is not worn that it is in vain; God and nature, however, do nothing in vain.
     From: Aristotle (On the Heavens [c.336 BCE], 271a33)
There has to be some goal, and not just movement to infinity [Aristotle]
     Full Idea: There has to be some goal, and not just movement to infinity.
     From: Aristotle (On the Heavens [c.336 BCE], 277a26)
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / f. Ancient elements
Aether moves in circles and is imperishable; the four elements perish, and move in straight lines [Aristotle, by Gill,ML]
     Full Idea: For Aristotle, aether and the four sublunary elements obey different physical laws. Aether moves naturally in a circle and, unlike its lower counterparts, is not a source of perishability. The four sublunary elements move naturally in straight lines.
     From: report of Aristotle (On the Heavens [c.336 BCE]) by Mary Louise Gill - Aristotle on Substance Ch.2
     A reaction: I think it is anachronistic for Gill to talk of 'obeying' and 'laws'. She should have said that they have different 'natures'. We can be amused by Greek errors, until we stare hard at the problems they were trying to solve.
An element is what bodies are analysed into, and won't itself divide into something else [Aristotle]
     Full Idea: An element is a body into which other bodies may be analyzed, present in them potentially or in actuality (which of these is still disputable), and not itself divisible into bodies different in form. That is what all men mean by element.
     From: Aristotle (On the Heavens [c.336 BCE], 302a05), quoted by Weisberg/Needham/Hendry - Philosophy of Chemistry 1.1
     A reaction: This is the classic definition of an element, which endured for a long time, and has been replaced by an 'actual components' view. Obviously analysis nowadays goes well beyond the atoms.
26. Natural Theory / C. Causation / 9. General Causation / b. Nomological causation
Singular causes, and identities, might be necessary without falling under a law [Mumford]
     Full Idea: One might have a singularist view of causation in which a cause necessitates its effect, but they need not be subsumed under a law, ..and there are identities which are metaphysically necessary without being laws of nature.
     From: Stephen Mumford (Laws in Nature [2004], 04.5)
26. Natural Theory / C. Causation / 9. General Causation / c. Counterfactual causation
We can give up the counterfactual account if we take causal language at face value [Mumford]
     Full Idea: If we take causal language at face value and give up reducing causal concepts to non-causal, non-modal concepts, we can give up the counterfactual dependence account.
     From: Stephen Mumford (Laws in Nature [2004], 10.5)
26. Natural Theory / C. Causation / 9. General Causation / d. Causal necessity
It is only properties which are the source of necessity in the world [Mumford]
     Full Idea: If laws do not give the world necessity, what does? I argue the positive case for it being properties, and properties alone, that do the job (so we might call them 'modal properties').
     From: Stephen Mumford (Laws in Nature [2004], 10.1)
26. Natural Theory / D. Laws of Nature / 1. Laws of Nature
There are four candidates for the logical form of law statements [Mumford]
     Full Idea: The contenders for the logical form of a law statement are 1) a universally quantified conditional, 2) a second-order relation between first-order universals, 3) a functional equivalence, and 4) a dispositional characteristic of a natural kind.
     From: Stephen Mumford (Laws in Nature [2004], 10.3)
26. Natural Theory / D. Laws of Nature / 4. Regularities / a. Regularity theory
Regularity laws don't explain, because they have no governing role [Mumford]
     Full Idea: A regularity-law does not explain its instances, because such laws play no role in determining or governing their instances.
     From: Stephen Mumford (Laws in Nature [2004], 09.7)
     A reaction: Good. It has always seemed to me entirely vacuous to explain an event simply by saying that it falls under some law.
Pure regularities are rare, usually only found in idealized conditions [Mumford]
     Full Idea: Pure regularities are not nearly as common as might have been thought, and are usually only to be found in simplified or idealized conditions.
     From: Stephen Mumford (Laws in Nature [2004], 05.3)
     A reaction: [He cites Nancy Cartwright 1999 for this view]
Regularities are more likely with few instances, and guaranteed with no instances! [Mumford]
     Full Idea: It seems that the fewer the instances, the more likely it is that there be a regularity, ..and if there are no cases at all, and no S is P, that is a regularity.
     From: Stephen Mumford (Laws in Nature [2004], 03.3)
     A reaction: [He attributes the second point to Molnar]
Would it count as a regularity if the only five As were also B? [Mumford]
     Full Idea: While it might be true that for all x, if Ax then Bx, would we really want to count it as a genuine regularity in nature if only five things were A (and all five were also B)?
     From: Stephen Mumford (Laws in Nature [2004], 03.3)
26. Natural Theory / D. Laws of Nature / 4. Regularities / b. Best system theory
If the best system describes a nomological system, the laws are in nature, not in the description [Mumford]
     Full Idea: If the world really does have its own nomological structure, that a systematization merely describes, why are the laws not to be equated with the nomological structure itself, rather than with the system that describes it?
     From: Stephen Mumford (Laws in Nature [2004], 03.4)
The best systems theory says regularities derive from laws, rather than constituting them [Mumford]
     Full Idea: The best systems theory (of Mill-Ramsey-Lewis) says that laws are not seen as regularities but, rather, as those things from which regularities - or rather, the whole world history including the regularities and everything else - can be derived.
     From: Stephen Mumford (Laws in Nature [2004], 03.4)
     A reaction: Put this way, the theory invites questions about ontology. Regularities are just patterns in physical reality, but axioms are propositions. So are they just features of human thought, or do these axioms actuallyr reside in reality. Too weak or too strong.
26. Natural Theory / D. Laws of Nature / 5. Laws from Universals
Laws of nature are necessary relations between universal properties, rather than about particulars [Mumford]
     Full Idea: The core of the Dretske-Tooley-Armstrong view of the late 70s is that we have a law of nature when we have a relation of natural necessitation between universals. ..The innovation was that laws are about properties, and only indirectly about particulars.
     From: Stephen Mumford (Laws in Nature [2004], 06.2)
     A reaction: It sounds as if we should then be able to know the laws of nature a priori, since that was Russell's 1912 definition of a priori knowledge.
If laws can be uninstantiated, this favours the view of them as connecting universals [Mumford]
     Full Idea: If there are laws that are instantiated in no particulars, then this would seem to favour the theory that laws connect universals rather than particulars.
     From: Stephen Mumford (Laws in Nature [2004], 06.4)
     A reaction: There is a dispute here between the Platonic view of uninstantiated universals (Tooley) and the Aristotelian instantiated view (Armstrong). Mumford and I prefer the dispositional account.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / c. Essence and laws
Laws of nature are just the possession of essential properties by natural kinds [Mumford]
     Full Idea: If dispositional essentialism is granted, then there is a law of nature wherever there is an essential property of a natural kind; laws are just the havings of essential properties by natural kinds.
     From: Stephen Mumford (Laws in Nature [2004], 07.2)
     A reaction: [He is expounding Ellis's view]
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / d. Knowing essences
To distinguish accidental from essential properties, we must include possible members of kinds [Mumford]
     Full Idea: Where properties are possessed by all kind members, we must distinguish the accidental from essential ones by considering all actual and possible kind members.
     From: Stephen Mumford (Laws in Nature [2004], 07.5)
     A reaction: This is why we must treat possibilities as features of the actual world.
26. Natural Theory / D. Laws of Nature / 11. Against Laws of Nature
The Central Dilemma is how to explain an internal or external view of laws which govern [Mumford]
     Full Idea: The Central Dilemma about laws of nature is that, if they have some governing role, then they must be internal or external to the things governed, and it is hard to give a plausible account of either view.
     From: Stephen Mumford (Laws in Nature [2004], 09.2)
     A reaction: This dilemma is the basis of Mumford's total rejection of 'laws of nature'. I think I agree.
You only need laws if you (erroneously) think the world is otherwise inert [Mumford]
     Full Idea: Laws are a solution to a problem that was misconceived. Only if you think that the world would be otherwise inactive or inanimate, do you have the need to add laws to your ontology.
     From: Stephen Mumford (Laws in Nature [2004], 01.5)
     A reaction: This is a bold and extreme view - and I agree with it. I consider laws to be quite a useful concept when discussing nature, but they are not part of the ontology, and they don't do any work. They are metaphysically hopeless.
There are no laws of nature in Aristotle; they became standard with Descartes and Newton [Mumford]
     Full Idea: Laws do not appear in Aristotle's metaphysics, and it wasn't until Descartes and Newton that laws entered the intellectual mainstream.
     From: Stephen Mumford (Laws in Nature [2004], 01.5)
     A reaction: Cf. Idea 5470.
27. Natural Reality / A. Classical Physics / 1. Mechanics / a. Explaining movement
If the more you raise some earth the faster it moves, why does the whole earth not move? [Aristotle]
     Full Idea: If you raise some earth and release it, it moves and won't stay put, and the more you raise it the faster it moves, so why does the whole earth not move?
     From: Aristotle (On the Heavens [c.336 BCE], 294a12)
27. Natural Reality / C. Space / 1. Void
Void is a kind of place, so it can't explain place [Aristotle]
     Full Idea: It is absurd to explain place by the void, as though this latter were not itself some kind of place.
     From: Aristotle (On the Heavens [c.336 BCE], 309b24)
     A reaction: Presumably this is aimed at Democritus.
27. Natural Reality / E. Cosmology / 1. Cosmology
The earth must be round and of limited size, because moving north or south makes different stars visible [Aristotle]
     Full Idea: Clearly the earth is round and not of great size, because when we move north or south we find that very different stars are visible.
     From: Aristotle (On the Heavens [c.336 BCE], 297b30)
The Earth must be spherical, because it casts a convex shadow on the moon [Aristotle]
     Full Idea: A lunar eclipse always has a convex dividing line, so, if it is eclipsed by the interposition of the earth, the circumference of the earth, being spherical, is responsible for the shape.
     From: Aristotle (On the Heavens [c.336 BCE], 297b29)
27. Natural Reality / E. Cosmology / 3. The Beginning
Everyone agrees that the world had a beginning, but thinkers disagree over whether it will end [Aristotle]
     Full Idea: All thinkers agree that the world had a beginning, but some claim that, having come into existence, it is everlasting.
     From: Aristotle (On the Heavens [c.336 BCE], 279b12)
27. Natural Reality / E. Cosmology / 10. Multiverse
It seems possible that there exists a limited number of other worlds apart from this one [Aristotle]
     Full Idea: One might indeed be puzzled whether, just as the world about us exists, nothing prevents there being others as well, certainly more than one, though not an unlimited number
     From: Aristotle (On the Heavens [c.336 BCE], 274a26)