Combining Texts

All the ideas for 'Intensional Logic', 'A Study of Concepts' and 'Why the Universe Exists'

unexpand these ideas     |    start again     |     specify just one area for these texts


61 ideas

2. Reason / D. Definition / 13. Against Definition
Most people can't even define a chair [Peacocke]
     Full Idea: Ordinary speakers are notoriously unsuccessful if asked to offer an explicit definition of the concept 'chair'.
     From: Christopher Peacocke (A Study of Concepts [1992], 6.1)
4. Formal Logic / E. Nonclassical Logics / 8. Intensional Logic
If terms change their designations in different states, they are functions from states to objects [Fitting]
     Full Idea: The common feature of every designating term is that designation may change from state to state - thus it can be formalized by a function from states to objects.
     From: Melvin Fitting (Intensional Logic [2007], 3)
     A reaction: Specifying the objects sounds OK, but specifying states sounds rather tough.
Intensional logic adds a second type of quantification, over intensional objects, or individual concepts [Fitting]
     Full Idea: To first order modal logic (with quantification over objects) we can add a second kind of quantification, over intensions. An intensional object, or individual concept, will be modelled by a function from states to objects.
     From: Melvin Fitting (Intensional Logic [2007], 3.3)
4. Formal Logic / E. Nonclassical Logics / 9. Awareness Logic
Awareness logic adds the restriction of an awareness function to epistemic logic [Fitting]
     Full Idea: Awareness logic enriched Hintikka's epistemic models with an awareness function, mapping each state to the set of formulas we are aware of at that state. This reflects some bound on the resources we can bring to bear.
     From: Melvin Fitting (Intensional Logic [2007], 3.6.1)
     A reaction: [He cites Fagin and Halpern 1988 for this]
4. Formal Logic / E. Nonclassical Logics / 10. Justification Logics
Justication logics make explicit the reasons for mathematical truth in proofs [Fitting]
     Full Idea: In justification logics, the logics of knowledge are extended by making reasons explicit. A logic of proof terms was created, with a semantics. In this, mathematical truths are known for explicit reasons, and these provide a measure of complexity.
     From: Melvin Fitting (Intensional Logic [2007], 3.6.1)
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
Classical logic is deliberately extensional, in order to model mathematics [Fitting]
     Full Idea: Mathematics is typically extensional throughout (we write 3+2=2+3 despite the two terms having different meanings). ..Classical first-order logic is extensional by design since it primarily evolved to model the reasoning of mathematics.
     From: Melvin Fitting (Intensional Logic [2007], §1)
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
λ-abstraction disambiguates the scope of modal operators [Fitting]
     Full Idea: λ-abstraction can be used to abstract and disambiguate a predicate. De re is [λx◊P(x)](f) - f has the possible-P property - and de dicto is ◊[λxP(x)](f) - possibly f has the P-property. Also applies to □.
     From: Melvin Fitting (Intensional Logic [2007], §3.3)
     A reaction: Compare the Barcan formula. Originated with Church in the 1930s, and Carnap 1947, but revived by Stalnaker and Thomason 1968. Because it refers to the predicate, it has a role in intensional versions of logic, especially modal logic.
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
Definite descriptions pick out different objects in different possible worlds [Fitting]
     Full Idea: Definite descriptions pick out different objects in different possible worlds quite naturally.
     From: Melvin Fitting (Intensional Logic [2007], 3.4)
     A reaction: A definite description can pick out the same object in another possible world, or a very similar one, or an object which has almost nothing in common with the others.
12. Knowledge Sources / B. Perception / 1. Perception
Perceptual concepts causally influence the content of our experiences [Peacocke]
     Full Idea: Once a thinker has acquired a perceptually individuated concept, his possession of that concept can causally influence what contents his experiences possess.
     From: Christopher Peacocke (A Study of Concepts [1992], 3.3)
     A reaction: Like having 35 different words for 'snow', I suppose. I'm never convinced by such claims. Having the concepts may well influence what you look at or listen to, but I don't see the deliverances of the senses being changed by the concepts.
12. Knowledge Sources / B. Perception / 6. Inference in Perception
Perception has proto-propositions, between immediate experience and concepts [Peacocke]
     Full Idea: Perceptual experience has a second layer of nonconceptual representational content, distinct from immediate 'scenarios' and from conceptual contents. These additional contents I call 'protopropositions', containing an individual and a property/relation.
     From: Christopher Peacocke (A Study of Concepts [1992], 3.3)
     A reaction: When philosophers start writing this sort of thing, I want to turn to neuroscience and psychology. I suppose the philosopher's justification for this sort of speculation is epistemological, but I see no good coming of it.
15. Nature of Minds / B. Features of Minds / 1. Consciousness / f. Higher-order thought
Consciousness of a belief isn't a belief that one has it [Peacocke]
     Full Idea: I dispute the view that consciousness of a belief consists in some kind of belief that one has the belief.
     From: Christopher Peacocke (A Study of Concepts [1992], 6.2)
     A reaction: Thus if one is trying to grasp the notion of higher-order thought, it doesn't have to be just more of same but one level up. Any sensible view of the brain would suggest that one sort of activity would lead into an entirely different sort.
18. Thought / D. Concepts / 1. Concepts / b. Concepts in philosophy
Philosophy should merely give necessary and sufficient conditions for concept possession [Peacocke, by Machery]
     Full Idea: Peacocke's 'Simple Account' says philosophers should determine the necessary and sufficient conditions for possessing a concept, and psychologists should explain how the human mind meets these conditions.
     From: report of Christopher Peacocke (A Study of Concepts [1992]) by Edouard Machery - Doing Without Concepts 2
     A reaction: One can't restrict philosophy so easily. Psychologists could do that job themselves, and dump philosophy. Philosophy is interested in the role of concepts in meaning, experience and judgement. If psychologists can contribute to philosophy, fine.
Peacocke's account of possession of a concept depends on one view of counterfactuals [Peacocke, by Machery]
     Full Idea: Peacocke's method for discovering the possession conditions of concepts is committed to a specific account of counterfactual judgements - the Simulation Model (judgements we'd make if the antecedent were actual).
     From: report of Christopher Peacocke (A Study of Concepts [1992]) by Edouard Machery - Doing Without Concepts 2.3.4
     A reaction: Machery concludes that the Simulation Model is incorrect. This appears to be Edgington's theory of conditionals, though Machery doesn't mention her.
Peacocke's account separates psychology from philosophy, and is very sketchy [Machery on Peacocke]
     Full Idea: Peacocke's Simple Account fails to connect the psychology and philosophy of concepts, it subordinates psychology to specific field of philosophy, it is committed to analytic/synthetic, and (most important) its method is very sketchy.
     From: comment on Christopher Peacocke (A Study of Concepts [1992]) by Edouard Machery - Doing Without Concepts 2.3.5
     A reaction: Machery says Peacocke proposes a research programme, and he is not surprised that no one has every followed. Machery is a well-known champion of 'experimental philosophy', makes philosophy respond to the psychology.
18. Thought / D. Concepts / 3. Ontology of Concepts / b. Concepts as abilities
Possessing a concept is being able to make judgements which use it [Peacocke]
     Full Idea: Possession of any concept requires the capacity to make judgements whose content contain it.
     From: Christopher Peacocke (A Study of Concepts [1992], 2.1)
     A reaction: Idea 12575 suggested that concept possession was an ability just to think about the concept. Why add that one must actually be able to make a judgement? Presumably to get truth in there somewhere. I may only speculate and fantasise, rather than judge.
A concept is just what it is to possess that concept [Peacocke]
     Full Idea: There can be no more to a concept than is determined by a correct account of what it is to possess that concept.
     From: Christopher Peacocke (A Study of Concepts [1992], 3.2)
     A reaction: He calls this the Principle of Dependence. An odd idea, if you compare 'there is no more to a book than its possession conditions'. If the principle is right, I struggle with the proposal that a philosopher might demonstrate such a principle.
Employing a concept isn't decided by introspection, but by making judgements using it [Peacocke]
     Full Idea: On the account I have been developing, what makes it the case that someone is employing one concept rather than another is not constituted by his impression of whether he is, but by complex facts about explanations of his judgements.
     From: Christopher Peacocke (A Study of Concepts [1992], 7.2)
     A reaction: I presume this brings truth into the picture, and hence establishes a link between the concept and the external world, rather than merely with other concepts. There seems to be a shadowy behaviourism lurking in the background.
18. Thought / D. Concepts / 4. Structure of Concepts / b. Analysis of concepts
An analysis of concepts must link them to something unconceptualized [Peacocke]
     Full Idea: At some point a good account of conceptual mastery must tie the mastery to abilities and relations that do not require conceptualization by the thinker.
     From: Christopher Peacocke (A Study of Concepts [1992], 5.3)
     A reaction: This obviously implies a physicalist commitment. Peacocke seeks, as so many do these days in philosophy of maths, to combine this commitment with some sort of Fregean "platonism without tears" (p.101). I don't buy it.
18. Thought / D. Concepts / 4. Structure of Concepts / f. Theory theory of concepts
Concepts are constituted by their role in a group of propositions to which we are committed [Peacocke, by Greco]
     Full Idea: Peacocke argues that it may be a condition of possessing a certain concept that one be fundamentally committed to certain propositions which contain it. A concept is constituted by playing a specific role in the cognitive economy of its possessor.
     From: report of Christopher Peacocke (A Study of Concepts [1992]) by John Greco - Justification is not Internal §9
     A reaction: Peacocke is talking about thought and propositions rather than language. Good for him. I always have problems with this sort of view: how can something play a role if it doesn't already have intrinsic properties to make the role possible?
19. Language / B. Reference / 1. Reference theories
A concept's reference is what makes true the beliefs of its possession conditions [Peacocke, by Horwich]
     Full Idea: Peacocke has a distinctive view of reference: The reference of a concept is that which will make true the primitively compelling beliefs that provide its possession conditions.
     From: report of Christopher Peacocke (A Study of Concepts [1992]) by Paul Horwich - Stipulation, Meaning and Apriority §9
     A reaction: The first thought is that there might occasionally be more than one referent which would do the job. It seems to be a very internal view of reference, where I take reference to be much more contextual and social.
27. Natural Reality / A. Classical Physics / 1. Mechanics / d. Gravity
Gravity is unusual, in that it always attracts and never repels [New Sci.]
     Full Idea: Gravity is an odd sort of force, not least because it only ever works one way. Electromagnetism attracts and repels, but with gravity there are only positive masses always attract.
     From: New Scientist writers (Why the Universe Exists [2017], 05)
     A reaction: This leads to speculation about anti-gravity, but there is no current evidence for it.
27. Natural Reality / B. Modern Physics / 1. Relativity / b. General relativity
In the Big Bang general relativity fails, because gravity is too powerful [New Sci.]
     Full Idea: At the origin of the universe gravity becomes so powerful that general relativity breaks down, giving infinity for every answer.
     From: New Scientist writers (Why the Universe Exists [2017], 09)
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / a. Electrodynamics
Quantum electrodynamics incorporates special relativity and quantum mechanics [New Sci.]
     Full Idea: The theory of electromagnetism that incorporates both special relativity and quantum mechanics is quantum electrodynamics (QED). It was developed by Dirac and others, and perfected in the 1940s. The field is a collection of quanta.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
     A reaction: This builds on Maxwell's earlier classical theory. QED is said to be the best theory in all of physics.
Photons have zero rest mass, so virtual photons have infinite range [New Sci.]
     Full Idea: Photons, the field quanta of the electromagnetic force, have zero rest mass, so virtual photons can exist indefinitely and travel any distance, meaning the electromagnetic force has an infinite range.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / b. Fields
In the standard model all the fundamental force fields merge at extremely high energies [New Sci.]
     Full Idea: The standard model says that the fields of all fundamental forces should merge at extremely high energies, meaning there is also a unified, high-energy field out there.
     From: New Scientist writers (Why the Universe Exists [2017], 03)
     A reaction: Not quite sure what 'out there' means. This idea is linked to the quest for dark energy. Is this unified phenomenon only found near the Big Bang?
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / c. Electrons
Electrons move fast, so are subject to special relativity [New Sci.]
     Full Idea: Electrons in atoms move at high speeds, so they are subject to the special theory of relativity.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
     A reaction: Presumably this implies a frame of reference, and defining velocities relative to other electrons. Plus time-dilation?
27. Natural Reality / B. Modern Physics / 3. Chromodynamics / a. Chromodynamics
The strong force is repulsive at short distances, strong at medium, and fades at long [New Sci.]
     Full Idea: Experiments show that the nuclear binding force does not follow the inverse square law, but is repulsive at the shortest distances, then attractive, then fades away rapidly as distance increases further.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
     A reaction: So how does it know when to be strong? Magnetism doesn't vary according to distance, and light obeys the inverse square law, because everything is decided at the output. - See 21151 for an explanation. It interacts after departure.
Gluons, the particles carrying the strong force, interact because of their colour charge [New Sci.]
     Full Idea: In QCD the particles that carry the strong force are called gluons. ...Gluons carry their own colour charges, so they can interact with each other (unlike photons) via the strong nuclear force (which limits the range of the force).
     From: New Scientist writers (Why the Universe Exists [2017], 02)
     A reaction: So the force varies in strength with distance because the degree of separation among the spreading gluons varies? The force has one range, which is squashed when close, effective at medium, and loses touch with distance?
The strong force binds quarks tight, and the nucleus more weakly [New Sci.]
     Full Idea: The strong force holds quarks together within protons and neutrons, and residual effects of the strong force bind protons (whch repel one another) and neutrons together in nuclei.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
     A reaction: So the force is much stronger between quarks (which can't escape), and only 'residual' in the nucleus, which must be why smashing nuclei open is fairly easy, but smashin protons open needs higher energies.
27. Natural Reality / B. Modern Physics / 3. Chromodynamics / b. Quarks
Classifying hadrons revealed two symmetry patterns, produced by three basic elements [New Sci.]
     Full Idea: Classifying hadrons according to charge, strangeness and spin revealed patterns of eight and ten particles (SU(3) symmetery). The mathematics then showed that these are built from a basic group of only three members.
     From: New Scientist writers (Why the Universe Exists [2017], 01)
Quarks in threes can build hadrons with spin ½ or with spin 3/2 [New Sci.]
     Full Idea: Quarks in threes can build hadrons with spin ½ (proton, duu; neutron, ddu; lambda, dus), or with spin 3/2 (omega-minus, sss).
     From: New Scientist writers (Why the Universe Exists [2017], 01)
Three different colours of quark (as in the proton) can cancel out to give no colour [New Sci.]
     Full Idea: Just as mixing three colours of light gives white, so the three colour charges of quarks can add up to give no colour. This is what happens in the proton, which always contains one blue-charge quark, one red and one green.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
27. Natural Reality / B. Modern Physics / 4. Standard Model / b. Standard model
The four fundamental forces (gravity, electromagnetism, weak and strong) are the effects of particles [New Sci.]
     Full Idea: There are four fundamental forces: gravity, electromagnetism, and the weak and strong nuclear forces. Particle physics has so far failed to encompass the force of gravity. The forces that shape our world are themselves the effect of particles.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
     A reaction: Philosophers must take note of the fact that forces are the effects of particles. Common sense pictures forces imposed on particles, like throwing a tennis ball, but the particles are actually the sources of force. The gravitino is speculative.
The weak force explains beta decay, and the change of type by quarks and leptons [New Sci.]
     Full Idea: The beta decay of the neutron (into a proton, an electron and an antineutrino) can be described in terms of the weak force, which is 10,000 times weaker than the strong force. It allows the quarks and leptons to change from one type to another.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
     A reaction: This seems to make it the key source of radioactivity. Perhaps it should be called the Force of Change?
Three particles enable the weak force: W+ and W- are charged, and Z° is not [New Sci.]
     Full Idea: The quantum field theory of the weak force needs three carrier particles. The W+ and W- are electrically charged, and enable the weak force to change the charge of a particle. The Z° is uncharged, and mediates weak interactions with no charge change.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
The weak force particles are heavy, so the force has a short range [New Sci.]
     Full Idea: The W and Z particles are heavy, and so cannot travel far from their parents. The weak force therefore has a very short range.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
Why do the charges of the very different proton and electron perfectly match up? [New Sci.]
     Full Idea: Why do the proton and electron charges mirror each other so perfectly when they are such different particles?
     From: New Scientist writers (Why the Universe Exists [2017], 04)
     A reaction: We seem to have reached a common stage in science, where we have a wonderful descriptive model (the Standard Model), but we cannot explain why what is modelled is the way it is.
The Standard Model cannot explain dark energy, survival of matter, gravity, or force strength [New Sci.]
     Full Idea: The standard model cannot explain dark matter, or dark energy (which is causing expansion to accelerate). It cannot explain how matter survived annihilation with anti-matter in the Big Bang, or explain gravity. The strength of each force is unexplained.
     From: New Scientist writers (Why the Universe Exists [2017], 06)
     A reaction: [compressed] P.141 adds that the model has to be manipulated to keep the Higgs mass low enough.
27. Natural Reality / B. Modern Physics / 4. Standard Model / c. Particle properties
Spin is a built-in ration of angular momentum [New Sci.]
     Full Idea: Spin is a built-in ration of angular momentum.
     From: New Scientist writers (Why the Universe Exists [2017], 01)
     A reaction: As an outsider all I can do is collect descriptions of such properties from the experts. The experts appear to be happy with the numbers inserted in the equations.
Quarks have red, green or blue colour charge (akin to electric charge) [New Sci.]
     Full Idea: Quarks have a property akin to electric charge, called their colour charge. It comes in three varieties, red, green and blue.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
Fermions, with spin ½, are antisocial, and cannot share quantum states [New Sci.]
     Full Idea: Particles with half-integer spin, such as electrons, protons or quarks (all spin ½) have an asymmetry in their wavefunction that makes them antisocial. These particles (Fermions) cannot share a quantum state.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
     A reaction: This is said to explain the complexity of matter, with carbon an especially good example.
Spin is akin to rotation, and is easily measured in a magnetic field [New Sci.]
     Full Idea: Spin is a quantum-mechanical property of a particle akin to rotation about its own axis. Particles of different spins respond to magnetic fields in different ways, so it is a relatively easy thing to measure.
     From: New Scientist writers (Why the Universe Exists [2017], 04)
     A reaction: I wish I knew what 'akin to' meant. Maybe particles are not rigid bodies, so they cannot spin in the way a top can? It must be an electro-magnetic property. Idea 21166 says spin has two possible directions.
Particles are spread out, with wave-like properties, and higher energy shortens the wavelength [New Sci.]
     Full Idea: Particles obeying the laws of quantum mechanics have wave-like properties - moving as a quantum wave-function, spread out in space, with wavelengths that get shorter as their energy increases.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
     A reaction: Thus X-rays are dangerous, but long wave radio is not. De Broglie's equation.
27. Natural Reality / B. Modern Physics / 4. Standard Model / d. Mass
The mass of protons and neutrinos is mostly binding energy, not the quarks [New Sci.]
     Full Idea: Most of a proton's or neutrino's mass is contained in the interaction energies of a 'sea' of quarks, antiquarks and gluons that bind them. ...You might feel solid, but in fact you're 99 per cent binding energy.
     From: New Scientist writers (Why the Universe Exists [2017], 04)
     A reaction: This is because energy is equivalent to mass (although gluons are said to have energy but no mass - puzzled by that). This is a fact which needs a bit of time to digest. Once you've grasped we are full of space, you still have understood it.
Gravitional mass turns out to be the same as inertial mass [New Sci.]
     Full Idea: There are two types of mass: gravitational mass quantifies how strongly an object feels gravity, while inertial mass quantifies an object's resistance to acceleration. There proven equality is at the heart of General Relativity.
     From: New Scientist writers (Why the Universe Exists [2017], 05)
     A reaction: It had never occurred to me that these two values might come apart. Doesn't their identical values demonstrate that they are in fact the same thing? Sounds like Hesperus/Phosphorus to me. The book calls it 'mysterious'.
27. Natural Reality / B. Modern Physics / 4. Standard Model / e. Protons
Neutrons are slightly heavier than protons, and decay into them by emitting an electron [New Sci.]
     Full Idea: The proton (938.3 MeV) is lighter than the neutron (939.6 MeV) and does not decay, but the heavier neutron can change into a proton by emitting an electron. (If you gather a bucketful of neutrons, after ten minutes only half of them would be left).
     From: New Scientist writers (Why the Universe Exists [2017], 01)
     A reaction: Protons are more or less eternal, but some theories have them decaying after billions of years. Smashing protons together is a popular pastime for physicists.
Top, bottom, charm and strange quarks quickly decay into up and down [New Sci.]
     Full Idea: Quarks can change from one variety to another, and the top, bottom, charm and strange quarks all rapidly decay to the up and down quarks of everyday life.
     From: New Scientist writers (Why the Universe Exists [2017], 01)
     A reaction: Hence the universe is largely composed of up and down quarks and electrons. The other quarks seem to be more important in the early universe.
27. Natural Reality / B. Modern Physics / 4. Standard Model / f. Neutrinos
Neutrinos were proposed as the missing energy in neutron beta decay [New Sci.]
     Full Idea: When a neutron decays into a proton and an electron (one example of beta decay), the energy of the two particles adds up to less than the starting energy of the neutron. Pauli and Fermi concluded that a neutrino (an electron antineutrino) is emitted.
     From: New Scientist writers (Why the Universe Exists [2017], 01)
     A reaction: I'm wondering how much they could infer about the nature of the new particle (which was only confirmed 26 years later).
Only neutrinos spin anticlockwise [New Sci.]
     Full Idea: Neutrinos are the only particles that seem just to spin anticlockwise.
     From: New Scientist writers (Why the Universe Exists [2017], 06)
     A reaction: See 21166. Anti-neutrino spin is the opposite way. Which way up do you hold the neutrino when pronouncing that it is 'anticlockwise?
27. Natural Reality / B. Modern Physics / 4. Standard Model / g. Anti-matter
Standard antineutrinos have opposite spin and opposite lepton number [New Sci.]
     Full Idea: In the conventional standard model neutrinos have antiparticles - which spin in the opposite direction, and have the opposite lepton number.
     From: New Scientist writers (Why the Universe Exists [2017], 05)
27. Natural Reality / B. Modern Physics / 5. Unified Models / a. Electro-weak unity
The symmetry of unified electromagnetic and weak forces was broken by the Higgs field [New Sci.]
     Full Idea: In the very early hot universe the electromagnetic and weak nuclear forces were one. The early emergence of the Higgs field led to electroweak symmetry breaking. The W and Z bosons grew fat, and the photon raced away mass-free.
     From: New Scientist writers (Why the Universe Exists [2017], 07)
27. Natural Reality / B. Modern Physics / 5. Unified Models / b. String theory
Supersymmetric string theory can be expressed using loop quantum gravity [New Sci.]
     Full Idea: String theory, together with its supersymmetric particles, has recently been rewritten in the space-time described by loop quantum gravity (which says that space-time ust be made from finite chunks).
     From: New Scientist writers (Why the Universe Exists [2017], 09)
String theory is now part of 11-dimensional M-Theory, involving p-branes [New Sci.]
     Full Idea: String theory has now been incorporated into Ed Witten's M-Theory, which is a mathematical framework that lives in 11-dimensional space-time, involving higher-dimensional objects called p-branes, of which strings are a special case.
     From: New Scientist writers (Why the Universe Exists [2017], 09)
String theory might be tested by colliding strings to make bigger 'stringballs' [New Sci.]
     Full Idea: A future accelerator might create 'stringballs', when two strings slam into one another and, rather than combining to form a stretched string, make a tangled ball. Finding them would prove string theory.
     From: New Scientist writers (Why the Universe Exists [2017], 08)
     A reaction: This is the only possible test for string theory which I have seen suggested. How do you 'slam strings together'?
String theory offers a quantum theory of gravity, by describing the graviton [New Sci.]
     Full Idea: String theory works as a quantum theory of gravity because string vibrations can describe gravitons, the hypothetical carriers of the gravitational force.
     From: New Scientist writers (Why the Universe Exists [2017], 09)
     A reaction: Presumably the main aim of a quantum theory of gravity is to include gravitons within particle theory. This idea has to be a main attraction of string theory. Compare Idea 21166.
27. Natural Reality / B. Modern Physics / 5. Unified Models / c. Supersymmetry
Only supersymmetry offers to incorporate gravity into the scheme [New Sci.]
     Full Idea: Peter Higgs says he is a fan of supersymmetry, largely because it seems to be the only route by which gravity can be brought into the scheme.
     From: New Scientist writers (Why the Universe Exists [2017], 03)
     A reaction: Peter Higgs proposed the Higgs boson (now discovered). This seems a very good reason to favour supersymmetry. A grand unified theory that left out gravity doesn't seem to be unified quite grandly enough.
Supersymmetry has extra heavy bosons and heavy fermions [New Sci.]
     Full Idea: Supersymmetry posits heavy boson partners for all fermions, and heavy fermions for all bosons.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
     A reaction: The main Fermions are electron, proton and quark. Do extra bosons imply extra forces? Peter Higgs favours supersymmetry.
Supersymmetry says particles and superpartners were unities, but then split [New Sci.]
     Full Idea: The key to supersymmetry is that in the high-energy soup of the early universe, particles and their superpartners were indistinguishable. Each pair existed as single massless entities. With expansion and cooling this supersymmetry broke down.
     From: New Scientist writers (Why the Universe Exists [2017], 08)
The evidence for supersymmetry keeps failing to appear [New Sci.]
     Full Idea: The old front-runner theory, supersymmetry, has fallen from grace as the Large Hadron Collider keeps failing to find it.
     From: New Scientist writers (Why the Universe Exists [2017], 07)
27. Natural Reality / C. Space / 4. Substantival Space
The Higgs field means even low energy space is not empty [New Sci.]
     Full Idea: The point about the Higgs field is that even the lowest-energy state of space is not empty.
     From: New Scientist writers (Why the Universe Exists [2017], 02)
     A reaction: So where is the Higgs field located? Even if there is no utterly empty space, the concept of location implies a concept of space more basic than the fields (about 16, I gather) which occupy it. You can't describe movement without a concept of location.
27. Natural Reality / E. Cosmology / 8. Dark Matter
Dark matter must have mass, to produce gravity, and no electric charge, to not reflect light [New Sci.]
     Full Idea: Whatever dark matter is made of, it must have mass to feel and generate gravity; but no electric charge, so it does not interact with light. The leading candidate has been the weakly interacting massive particle (WIMP), much heavier than a proton.
     From: New Scientist writers (Why the Universe Exists [2017], 08)
     A reaction: Note that it must 'generate' gravity. The idea of a law of gravity which is externally imposed on matter is long dead. Heavy WIMPs have not yet been detected.