Combining Texts

All the ideas for 'Intensional Logic', 'Actions' and 'Grundlagen (Foundations of Theory of Manifolds)'

unexpand these ideas     |    start again     |     specify just one area for these texts


10 ideas

4. Formal Logic / E. Nonclassical Logics / 8. Intensional Logic
If terms change their designations in different states, they are functions from states to objects [Fitting]
     Full Idea: The common feature of every designating term is that designation may change from state to state - thus it can be formalized by a function from states to objects.
     From: Melvin Fitting (Intensional Logic [2007], 3)
     A reaction: Specifying the objects sounds OK, but specifying states sounds rather tough.
Intensional logic adds a second type of quantification, over intensional objects, or individual concepts [Fitting]
     Full Idea: To first order modal logic (with quantification over objects) we can add a second kind of quantification, over intensions. An intensional object, or individual concept, will be modelled by a function from states to objects.
     From: Melvin Fitting (Intensional Logic [2007], 3.3)
4. Formal Logic / E. Nonclassical Logics / 9. Awareness Logic
Awareness logic adds the restriction of an awareness function to epistemic logic [Fitting]
     Full Idea: Awareness logic enriched Hintikka's epistemic models with an awareness function, mapping each state to the set of formulas we are aware of at that state. This reflects some bound on the resources we can bring to bear.
     From: Melvin Fitting (Intensional Logic [2007], 3.6.1)
     A reaction: [He cites Fagin and Halpern 1988 for this]
4. Formal Logic / E. Nonclassical Logics / 10. Justification Logics
Justication logics make explicit the reasons for mathematical truth in proofs [Fitting]
     Full Idea: In justification logics, the logics of knowledge are extended by making reasons explicit. A logic of proof terms was created, with a semantics. In this, mathematical truths are known for explicit reasons, and these provide a measure of complexity.
     From: Melvin Fitting (Intensional Logic [2007], 3.6.1)
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Cantor developed sets from a progression into infinity by addition, multiplication and exponentiation [Cantor, by Lavine]
     Full Idea: Cantor's development of set theory began with his discovery of the progression 0, 1, ....∞, ∞+1, ∞+2, ..∞x2, ∞x3, ...∞^2, ..∞^3, ...∞^∞, ...∞^∞^∞.....
     From: report of George Cantor (Grundlagen (Foundations of Theory of Manifolds) [1883]) by Shaughan Lavine - Understanding the Infinite VIII.2
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
Classical logic is deliberately extensional, in order to model mathematics [Fitting]
     Full Idea: Mathematics is typically extensional throughout (we write 3+2=2+3 despite the two terms having different meanings). ..Classical first-order logic is extensional by design since it primarily evolved to model the reasoning of mathematics.
     From: Melvin Fitting (Intensional Logic [2007], §1)
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
λ-abstraction disambiguates the scope of modal operators [Fitting]
     Full Idea: λ-abstraction can be used to abstract and disambiguate a predicate. De re is [λx◊P(x)](f) - f has the possible-P property - and de dicto is ◊[λxP(x)](f) - possibly f has the P-property. Also applies to □.
     From: Melvin Fitting (Intensional Logic [2007], §3.3)
     A reaction: Compare the Barcan formula. Originated with Church in the 1930s, and Carnap 1947, but revived by Stalnaker and Thomason 1968. Because it refers to the predicate, it has a role in intensional versions of logic, especially modal logic.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Ordinals are generated by endless succession, followed by a limit ordinal [Cantor, by Lavine]
     Full Idea: Ordinal numbers are generated by two principles: each ordinal has an immediate successor, and each unending sequence has an ordinal number as its limit (that is, an ordinal that is next after such a sequence).
     From: report of George Cantor (Grundlagen (Foundations of Theory of Manifolds) [1883]) by Shaughan Lavine - Understanding the Infinite III.4
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
Definite descriptions pick out different objects in different possible worlds [Fitting]
     Full Idea: Definite descriptions pick out different objects in different possible worlds quite naturally.
     From: Melvin Fitting (Intensional Logic [2007], 3.4)
     A reaction: A definite description can pick out the same object in another possible world, or a very similar one, or an object which has almost nothing in common with the others.
20. Action / A. Definition of Action / 5. Action as Trying
Bodily movements are not actions, which are really the tryings within bodily movement [Hornsby, by Stout,R]
     Full Idea: Hornsby claims the basic description of action is in terms of trying, that all actions (even means of doing other actions) are actions of trying, and that tryings (and therefore actions) are interior to bodily movements (which are thus not essential).
     From: report of Jennifer Hornsby (Actions [1980]) by Rowland Stout - Action 9 'Trying'
     A reaction: [compression of his summary] There is no regress with explaining the 'action' of trying, because it is proposed that trying is the most basic thing in all actions. If you are paralysed, your trying does not result in action. Too mentalistic?