Combining Texts

All the ideas for 'Intensional Logic', 'Russell's Ontological Development' and 'To be is to be the value of a variable..'

unexpand these ideas     |    start again     |     specify just one area for these texts


21 ideas

2. Reason / D. Definition / 12. Paraphrase
Russell offered a paraphrase of definite description, to avoid the commitment to objects [Quine]
     Full Idea: Russell's theory involved defining a term not by presenting a direct equivalent of it, but by 'paraphrasis', providing equivalents of the sentences. In this way, reference to fictitious objects can be simulated without our being committed to the objects.
     From: Willard Quine (Russell's Ontological Development [1966], p.75)
     A reaction: I hadn't quite grasped that the modern strategy of paraphrase tracks back to Russell - though it now looks obvious, thanks to Quine. Paraphrase is a beautiful way of sidestepping ontological problems. See Frege on the moons of Jupiter.
4. Formal Logic / E. Nonclassical Logics / 8. Intensional Logic
If terms change their designations in different states, they are functions from states to objects [Fitting]
     Full Idea: The common feature of every designating term is that designation may change from state to state - thus it can be formalized by a function from states to objects.
     From: Melvin Fitting (Intensional Logic [2007], 3)
     A reaction: Specifying the objects sounds OK, but specifying states sounds rather tough.
Intensional logic adds a second type of quantification, over intensional objects, or individual concepts [Fitting]
     Full Idea: To first order modal logic (with quantification over objects) we can add a second kind of quantification, over intensions. An intensional object, or individual concept, will be modelled by a function from states to objects.
     From: Melvin Fitting (Intensional Logic [2007], 3.3)
4. Formal Logic / E. Nonclassical Logics / 9. Awareness Logic
Awareness logic adds the restriction of an awareness function to epistemic logic [Fitting]
     Full Idea: Awareness logic enriched Hintikka's epistemic models with an awareness function, mapping each state to the set of formulas we are aware of at that state. This reflects some bound on the resources we can bring to bear.
     From: Melvin Fitting (Intensional Logic [2007], 3.6.1)
     A reaction: [He cites Fagin and Halpern 1988 for this]
4. Formal Logic / E. Nonclassical Logics / 10. Justification Logics
Justication logics make explicit the reasons for mathematical truth in proofs [Fitting]
     Full Idea: In justification logics, the logics of knowledge are extended by making reasons explicit. A logic of proof terms was created, with a semantics. In this, mathematical truths are known for explicit reasons, and these provide a measure of complexity.
     From: Melvin Fitting (Intensional Logic [2007], 3.6.1)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
The use of plurals doesn't commit us to sets; there do not exist individuals and collections [Boolos]
     Full Idea: We should abandon the idea that the use of plural forms commits us to the existence of sets/classes… Entities are not to be multiplied beyond necessity. There are not two sorts of things in the world, individuals and collections.
     From: George Boolos (To be is to be the value of a variable.. [1984]), quoted by Henry Laycock - Object
     A reaction: The problem of quantifying over sets is notoriously difficult. Try http://plato.stanford.edu/entries/object/index.html.
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Does a bowl of Cheerios contain all its sets and subsets? [Boolos]
     Full Idea: Is there, in addition to the 200 Cheerios in a bowl, also a set of them all? And what about the vast number of subsets of Cheerios? It is haywire to think that when you have some Cheerios you are eating a set. What you are doing is: eating the Cheerios.
     From: George Boolos (To be is to be the value of a variable.. [1984], p.72)
     A reaction: In my case Boolos is preaching to the converted. I am particularly bewildered by someone (i.e. Quine) who believes that innumerable sets exist while 'having a taste for desert landscapes' in their ontology.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Monadic second-order logic might be understood in terms of plural quantifiers [Boolos, by Shapiro]
     Full Idea: Boolos has proposed an alternative understanding of monadic, second-order logic, in terms of plural quantifiers, which many philosophers have found attractive.
     From: report of George Boolos (To be is to be the value of a variable.. [1984]) by Stewart Shapiro - Philosophy of Mathematics 3.5
Boolos showed how plural quantifiers can interpret monadic second-order logic [Boolos, by Linnebo]
     Full Idea: In an indisputable technical result, Boolos showed how plural quantifiers can be used to interpret monadic second-order logic.
     From: report of George Boolos (To be is to be the value of a variable.. [1984], Intro) by Øystein Linnebo - Plural Quantification Exposed Intro
Any sentence of monadic second-order logic can be translated into plural first-order logic [Boolos, by Linnebo]
     Full Idea: Boolos discovered that any sentence of monadic second-order logic can be translated into plural first-order logic.
     From: report of George Boolos (To be is to be the value of a variable.. [1984], §1) by Øystein Linnebo - Plural Quantification Exposed p.74
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
Classical logic is deliberately extensional, in order to model mathematics [Fitting]
     Full Idea: Mathematics is typically extensional throughout (we write 3+2=2+3 despite the two terms having different meanings). ..Classical first-order logic is extensional by design since it primarily evolved to model the reasoning of mathematics.
     From: Melvin Fitting (Intensional Logic [2007], §1)
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Identity is clearly a logical concept, and greatly enhances predicate calculus [Boolos]
     Full Idea: Indispensable to cross-reference, lacking distinctive content, and pervading thought and discourse, 'identity' is without question a logical concept. Adding it to predicate calculus significantly increases the number and variety of inferences possible.
     From: George Boolos (To be is to be the value of a variable.. [1984], p.54)
     A reaction: It is not at all clear to me that identity is a logical concept. Is 'existence' a logical concept? It seems to fit all of Boolos's criteria? I say that all he really means is that it is basic to thought, but I'm not sure it drives the reasoning process.
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
λ-abstraction disambiguates the scope of modal operators [Fitting]
     Full Idea: λ-abstraction can be used to abstract and disambiguate a predicate. De re is [λx◊P(x)](f) - f has the possible-P property - and de dicto is ◊[λxP(x)](f) - possibly f has the P-property. Also applies to □.
     From: Melvin Fitting (Intensional Logic [2007], §3.3)
     A reaction: Compare the Barcan formula. Originated with Church in the 1930s, and Carnap 1947, but revived by Stalnaker and Thomason 1968. Because it refers to the predicate, it has a role in intensional versions of logic, especially modal logic.
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Second-order quantifiers are just like plural quantifiers in ordinary language, with no extra ontology [Boolos, by Shapiro]
     Full Idea: Boolos proposes that second-order quantifiers be regarded as 'plural quantifiers' are in ordinary language, and has developed a semantics along those lines. In this way they introduce no new ontology.
     From: report of George Boolos (To be is to be the value of a variable.. [1984]) by Stewart Shapiro - Foundations without Foundationalism 7 n32
     A reaction: This presumably has to treat simple predicates and relations as simply groups of objects, rather than having platonic existence, or something.
5. Theory of Logic / G. Quantification / 6. Plural Quantification
We should understand second-order existential quantifiers as plural quantifiers [Boolos, by Shapiro]
     Full Idea: Standard second-order existential quantifiers pick out a class or a property, but Boolos suggests that they be understood as a plural quantifier, like 'there are objects' or 'there are people'.
     From: report of George Boolos (To be is to be the value of a variable.. [1984]) by Stewart Shapiro - Philosophy of Mathematics 7.4
     A reaction: This idea has potential application to mathematics, and Lewis (1991, 1993) 'invokes it to develop an eliminative structuralism' (Shapiro).
Plural forms have no more ontological commitment than to first-order objects [Boolos]
     Full Idea: Abandon the idea that use of plural forms must always be understood to commit one to the existence of sets of those things to which the corresponding singular forms apply.
     From: George Boolos (To be is to be the value of a variable.. [1984], p.66)
     A reaction: It seems to be an open question whether plural quantification is first- or second-order, but it looks as if it is a rewriting of the first-order.
5. Theory of Logic / G. Quantification / 7. Unorthodox Quantification
Boolos invented plural quantification [Boolos, by Benardete,JA]
     Full Idea: Boolos virtually patented the new device of plural quantification.
     From: report of George Boolos (To be is to be the value of a variable.. [1984]) by José A. Benardete - Logic and Ontology
     A reaction: This would be 'there are some things such that...'
7. Existence / D. Theories of Reality / 11. Ontological Commitment / b. Commitment of quantifiers
First- and second-order quantifiers are two ways of referring to the same things [Boolos]
     Full Idea: Ontological commitment is carried by first-order quantifiers; a second-order quantifier needn't be taken to be a first-order quantifier in disguise, having special items, collections, as its range. They are two ways of referring to the same things.
     From: George Boolos (To be is to be the value of a variable.. [1984], p.72)
     A reaction: If second-order quantifiers are just a way of referring, then we can see first-order quantifiers that way too, so we could deny 'objects'.
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
Definite descriptions pick out different objects in different possible worlds [Fitting]
     Full Idea: Definite descriptions pick out different objects in different possible worlds quite naturally.
     From: Melvin Fitting (Intensional Logic [2007], 3.4)
     A reaction: A definite description can pick out the same object in another possible world, or a very similar one, or an object which has almost nothing in common with the others.
19. Language / A. Nature of Meaning / 7. Meaning Holism / a. Sentence meaning
Taking sentences as the unit of meaning makes useful paraphrasing possible [Quine]
     Full Idea: The new freedom that Russell confers by paraphrasis (of definite descriptions) is our reward for recognising that the unit of communication is the sentence and not the word.
     From: Willard Quine (Russell's Ontological Development [1966], p.75)
     A reaction: Since many people hardly ever speak a properly formed sentence, I take propositions to be better candidates for this. However, I don't see how we can reject the compositional view (the meanings are assembled).
Knowing a word is knowing the meanings of sentences which contain it [Quine]
     Full Idea: We can say that knowing words is knowing how to work out the meanings of sentences containing them. Dictionary definitions are mere clauses in a recursive definition of the meanings of sentences.
     From: Willard Quine (Russell's Ontological Development [1966], p.76)
     A reaction: Do you have to recursively define all the sentences that might contain the word, before you can fully know the meaning of the word? He seems to credit Russell with the holistic view of sentences (though I think that starts with Frege).