Combining Texts

All the ideas for 'Analyzing Modality', 'Marx' and 'Theories of Everything'

unexpand these ideas     |    start again     |     specify just one area for these texts


34 ideas

5. Theory of Logic / G. Quantification / 3. Objectual Quantification
'All horses' either picks out the horses, or the things which are horses [Jubien]
     Full Idea: Two ways to see 'all horses are animals' are as picking out all the horses (so that it is a 'horse-quantifier'), ..or as ranging over lots of things in addition to horses, with 'horses' then restricting the things to those that satisfy 'is a horse'.
     From: Michael Jubien (Analyzing Modality [2007], 2)
     A reaction: Jubien says this gives you two different metaphysical views, of a world of horses etc., or a world of things which 'are horses'. I vote for the first one, as the second seems to invoke an implausible categorical property ('being a horse'). Cf Idea 11116.
9. Objects / A. Existence of Objects / 1. Physical Objects
Being a physical object is our most fundamental category [Jubien]
     Full Idea: Being a physical object (as opposed to being a horse or a statue) really is our most fundamental category for dealing with the external world.
     From: Michael Jubien (Analyzing Modality [2007], 2)
     A reaction: This raises the interesting question of why any categories should be considered to be more 'fundamental' than others. I can only think that we perceive something to be an object fractionally before we (usually) manage to identify it.
9. Objects / A. Existence of Objects / 5. Individuation / d. Individuation by haecceity
Haecceities implausibly have no qualities [Jubien]
     Full Idea: Properties of 'being such and such specific entity' are often called 'haecceities', but this term carries the connotation of non-qualitativeness which I don't favour.
     From: Michael Jubien (Analyzing Modality [2007], 2)
     A reaction: The way he defines it makes it sound as if it was a category, but I take it to be more like a bare individual essence. If it has not qualities then it has no causal powers, so there could be no evidence for its existence.
10. Modality / A. Necessity / 11. Denial of Necessity
De re necessity is just de dicto necessity about object-essences [Jubien]
     Full Idea: I suggest that the de re is to be analyzed in terms of the de dicto. ...We have a case of modality de re when (and only when) the appropriate property in the de dicto formulation is an object-essence.
     From: Michael Jubien (Analyzing Modality [2007], 5)
10. Modality / C. Sources of Modality / 5. Modality from Actuality
Modal propositions transcend the concrete, but not the actual [Jubien]
     Full Idea: Where modal propositions may once have seemed to transcend the actual, they now seem only to transcend the concrete.
     From: Michael Jubien (Analyzing Modality [2007], 4)
     A reaction: This is because Jubien has defended a form of platonism. Personally I take modal propositions to be perceptible in the concrete world, by recognising the processes involved, not the mere static stuff.
Your properties, not some other world, decide your possibilities [Jubien]
     Full Idea: The possibility of your having been a playwright has nothing to do with how people are on other planets, whether in our own or in some other realm. It is only to do with you and the relevant property.
     From: Michael Jubien (Analyzing Modality [2007], 1)
     A reaction: I'm inclined to think that this simple point is conclusive disproof of possible worlds as an explanation of modality (apart from Jubien's other nice points). What we need to understand are modal properties, not other worlds.
Modal truths are facts about parts of this world, not about remote maximal entities [Jubien]
     Full Idea: Typical modal truths are just facts about our world, and generally facts about very small parts of it, not facts about some infinitude of complex, maximal entities.
     From: Michael Jubien (Analyzing Modality [2007], 1)
     A reaction: I think we should embrace this simple fact immediately, and drop all this nonsense about possible worlds, even if they are useful for the semantics of modal logic.
10. Modality / E. Possible worlds / 1. Possible Worlds / e. Against possible worlds
If other worlds exist, then they are scattered parts of the actual world [Jubien]
     Full Idea: Any other realms that happened to exist would just be scattered parts of the actual world, not entire worlds at all. It would just happen that physical reality was fragmented in this remarkable but modally inconsequential way.
     From: Michael Jubien (Analyzing Modality [2007], 1)
     A reaction: This is aimed explicitly at Lewis's modal realism, and strikes me as correct. Jubien's key point here is that they are irrelevant to modality, just as foreign countries are irrelevant to the modality of this one.
If all possible worlds just happened to include stars, their existence would be necessary [Jubien]
     Full Idea: If all of the possible worlds happened to include stars, how plausible is it to think that if this is how things really are, then we've just been wrong to regard the existence of stars as contingent?
     From: Michael Jubien (Analyzing Modality [2007], 1)
Possible worlds just give parallel contingencies, with no explanation at all of necessity [Jubien]
     Full Idea: In the world theory, what passes for 'necessity' is just a bunch of parallel 'contingencies'. The theory provides no basis for understanding why these contingencies repeat unremittingly across the board (while others do not).
     From: Michael Jubien (Analyzing Modality [2007], 1)
Worlds don't explain necessity; we use necessity to decide on possible worlds [Jubien]
     Full Idea: The suspicion is that the necessity doesn't arise from how worlds are, but rather that the worlds are taken to be as they are in order to capture the intuitive necessity.
     From: Michael Jubien (Analyzing Modality [2007], 1)
     A reaction: It has always seemed to me rather glaring that you need a prior notion of 'possible' before you can start to talk about 'possible worlds', but I have always been too timid to disagree with the combination of Saul Kripke and David Lewis. Thank you, Jubien!
We have no idea how many 'possible worlds' there might be [Jubien]
     Full Idea: As soon as we start talking about 'possible world', we beg the question of their relevance to our prior notion of possibility. For all we know, there are just two such realms, or twenty-seven, or uncountably many, or even set-many.
     From: Michael Jubien (Analyzing Modality [2007], 1)
If there are no other possible worlds, do we then exist necessarily? [Jubien]
     Full Idea: Suppose there happen to be no other concrete realms. Would we happily accept the consequence that we exist necessarily?
     From: Michael Jubien (Analyzing Modality [2007], 1)
10. Modality / E. Possible worlds / 3. Transworld Objects / c. Counterparts
We mustn't confuse a similar person with the same person [Jubien]
     Full Idea: If someone similar to Humphrey won the election, that nicely establishes the possibility of someone's winning who is similar to Humphrey. But we mustn't confuse this possibility with the intuitively different possibility of Humphrey himself winning.
     From: Michael Jubien (Analyzing Modality [2007], 1)
24. Political Theory / C. Ruling a State / 4. Changing the State / c. Revolution
In Marxism the state will be superseded [Singer]
     Full Idea: It is a famous Marxist doctrine that the state will be superseded.
     From: Peter Singer (Marx [1980], 9)
     A reaction: Why is that final state communism rather than anarchism?
24. Political Theory / D. Ideologies / 9. Communism
Materialist history says we are subject to incomprehensible forces [Singer]
     Full Idea: The materialist conception of history tells us that human beings are totally subject to forces they do not understand and control.
     From: Peter Singer (Marx [1980], 6)
     A reaction: How does Marx know the forces? An exceptionally influential idea, because it is a modern commonplace that we have very little control over our own lives (apart from right wingers asserting that 'you can have anything if you really really want it').
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / b. Heat
Work degrades into heat, but not vice versa [Close]
     Full Idea: William Thomson, Lord Kelvin, declared (in 1865) the second law of thermodynamics: mechanical work inevitably tends to degrade into heat, but not vice versa.
     From: Frank Close (Theories of Everything [2017], 3 'Perpetual')
     A reaction: The basis of entropy, which makes time an essential part of physics. Might this be the single most important fact about the physical world?
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / c. Conservation of energy
First Law: energy can change form, but is conserved overall [Close]
     Full Idea: The first law of thermodynamics : energy can be changed from one form to another, but is always conserved overall.
     From: Frank Close (Theories of Everything [2017], 3 'Perpetual')
     A reaction: So we have no idea what energy is, but we know it's conserved. (Daniel Bernoulli showed the greater the mean energy, the higher the temperature. James Joule showed the quantitative equivalence of heat and work p.26-7)
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / d. Entropy
Third Law: total order and minimum entropy only occurs at absolute zero [Close]
     Full Idea: The third law of thermodynamics says that a hypothetical state of total order and minimum entropy can be attained only at the absolute zero temperature, minus 273 degrees Celsius.
     From: Frank Close (Theories of Everything [2017], 3 'Arrow')
     A reaction: If temperature is energetic movement of atoms (or whatever), then obviously zero movement is the coldest it can get. So is absolute zero an energy state, or an absence of energy? I have no idea what 'total order' means.
27. Natural Reality / B. Modern Physics / 1. Relativity / a. Special relativity
The electric and magnetic are tightly linked, and viewed according to your own motion [Close]
     Full Idea: Electric and magnetic phenomena are profoundly intertwined; what you interpret as electric or magnetic thus depends on your own motion.
     From: Frank Close (Theories of Everything [2017], 3 'Light!')
     A reaction: This sounds like an earlier version of special relativity.
All motions are relative and ambiguous, but acceleration is the same in all inertial frames [Close]
     Full Idea: There is no absolute state of rest; only relative motions are unambiguous. Contrast this with acceleration, however, which has the same magnitude in all inertial frames.
     From: Frank Close (Theories of Everything [2017], 3 'Newton's')
     A reaction: It seems important to remember this, before we start trumpeting about the whole of physics being relative. ....But see Idea 20634!
27. Natural Reality / B. Modern Physics / 1. Relativity / b. General relativity
The general relativity equations relate curvature in space-time to density of energy-momentum [Close]
     Full Idea: The essence of general relativity relates 'curvature in space-time' on one side of the equation to the 'density of momentum and energy' on the other. ...In full, Einstein required ten equations of this type.
     From: Frank Close (Theories of Everything [2017], 5 'Gravity')
     A reaction: Momentum involves mass, and energy is equivalent to mass (e=mc^2).
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / a. Electrodynamics
Photon exchange drives the electro-magnetic force [Close]
     Full Idea: The exchange of photons drives the electro-magnetic force.
     From: Frank Close (Theories of Everything [2017], 6 'Superstrings')
     A reaction: So light, which we just think of as what is visible, is a mere side-effect of the engine room of nature - the core mechanism of the whole electro-magnetic field.
Electric fields have four basic laws (two by Gauss, one by Ampère, one by Faraday) [Close]
     Full Idea: Four basic laws of electric and magnetic fields: Gauss's Law (about the flux produced by a field), Gauss's law of magnets (there can be no monopoles), Ampère's Law (fields on surfaces), and Farday's Law (accelerated magnets produce fields).
     From: Frank Close (Theories of Everything [2017], 3 'Light!')
     A reaction: [Highly compressed, for an overview. Close explains them]
Light isn't just emitted in quanta called photons - light is photons [Close]
     Full Idea: Planck had assumed that light is emitted in quanta called photons. Einstein went further - light is photons.
     From: Frank Close (Theories of Everything [2017], 3 'Light!')
     A reaction: The point is that light travels as entities which are photons, rather than the emissions being quantized packets of some other stuff.
In general relativity the energy and momentum of photons subjects them to gravity [Close]
     Full Idea: In Einstein's general theory, gravity acts also on energy and momentum, not simply on mass. For example, massless photons of light feel the gravitational attraction of the Sun and can be deflected.
     From: Frank Close (Theories of Everything [2017], 5 'Planck')
     A reaction: Ah, a puzzle solved. How come massless photons are bent by gravity?
Electro-magnetic waves travel at light speed - so light is electromagnetism! [Close]
     Full Idea: Faradays' measurements predicted the speed of electro-magnetic waves, which happened to be the speed of light, so Maxwell made an inspired leap: light is an electromagnetic wave!
     From: Frank Close (Theories of Everything [2017], 3 'Light!')
     A reaction: Put that way, it doesn't sound like an 'inspired' leap, because travelling at exactly the same speed seems a pretty good indication that they are the same sort of thing. (But I'm not denying that Maxwell was a special guy!)
In QED, electro-magnetism exists in quantum states, emitting and absorbing electrons [Close]
     Full Idea: Dirac created quantum electrodynamics (QED): the universal electro-magnetic field can exist in discreet states of energy (with photons appearing and disappearing by energy excitations. This combined classical ideas, quantum theory and special relativity.
     From: Frank Close (Theories of Everything [2017], 3 'Light!')
     A reaction: Close says this is the theory of everything in atomic structure, but not in nuclei (which needs QCD and QFD). So if there are lots of other 'fields' (e.g. gravitational, weak, strong, Higgs), how do they all fit together? Do they talk to one another?
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / b. Fields
Quantum fields contain continual rapid creation and disappearance [Close]
     Full Idea: Quantum field theory implies that the vacuum of space is filled with particles and antiparticles which bubble in and out of existence on faster and faster timescales over shorter and shorter distances.
     From: Frank Close (Theories of Everything [2017], 6 'Intro')
     A reaction: Ponder this sentence until you head aches. Existence, but not as we know it, Jim. Close says calculations in QED about the electron confirm this.
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / c. Electrons
Dirac showed how electrons conform to special relativity [Close]
     Full Idea: In 1928 Paul Dirac discovered the quantum equation that describes the electron and conforms to the requirements special relativity theory.
     From: Frank Close (Theories of Everything [2017], 3 'Light!')
     A reaction: This sounds like a major step in the unification of physics. Quantum theory and General relativity remain irreconcilable.
Electrons get their mass by interaction with the Higgs field [Close]
     Full Idea: The electron gets its mass by interaction with the ubiquitous Higgs field.
     From: Frank Close (Theories of Everything [2017], 6 'Hierarchy')
     A reaction: I thought I understood mass until I read this. Is it just wrong to say the mass of a table is the 'amount of stuff' in it?
27. Natural Reality / B. Modern Physics / 4. Standard Model / a. Concept of matter
Modern theories of matter are grounded in heat, work and energy [Close]
     Full Idea: The link between temperature, heat, work and energy is at the root of our historical ability to construct theories of matter, such as Newton's dynamics, while ignoring, and indeed being ignorant of - atomic dimensions.
     From: Frank Close (Theories of Everything [2017], 3 'Arrow')
     A reaction: That is, presumably, that even when you fill in the atoms, and the standard model of physics, these aspects of matter do the main explaiining (of the behaviour, rather than of the structure).
27. Natural Reality / B. Modern Physics / 5. Unified Models / a. Electro-weak unity
The Higgs field is an electroweak plasma - but we don't know what stuff it consists of [Close]
     Full Idea: In 2012 it was confirmed that we are immersed in an electroweak plasma - the Higgs field. We curently have no knowledge of what this stuff might consist of.
     From: Frank Close (Theories of Everything [2017], 4 'Higgs')
     A reaction: The second sentence has my full attention. So we don't understand a field properly until we understand the 'stuff' it is made of? So what are all the familiar fields made of? Tell me more!
27. Natural Reality / C. Space / 6. Space-Time
Space-time is indeterminate foam over short distances [Close]
     Full Idea: At very short distances, space-time itself becomes some indeterminate foam.
     From: Frank Close (Theories of Everything [2017], 6 'Intro')
     A reaction: [see Close for a bit more detail of this weird idea]