Combining Texts

All the ideas for 'Mahaprajnaparamitashastra', 'The Unimportance of Identity' and 'Foundations without Foundationalism'

unexpand these ideas     |    start again     |     specify just one area for these texts


59 ideas

2. Reason / E. Argument / 7. Thought Experiments
Imaginary cases are good for revealing our beliefs, rather than the truth [Parfit]
     Full Idea: I believe it is worth considering imaginary cases (such as Teletransportation), as we can use them to discover, not what the truth is, but what we believe.
     From: Derek Parfit (The Unimportance of Identity [1995], p.293)
     A reaction: The trouble is that we might say that IF I were suddenly turned into a pig, then I would come to believe in dualism, but that will not and cannot happen, because dualism is false. It seems essential to accept the natural possibility of the case.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
Satisfaction is 'truth in a model', which is a model of 'truth' [Shapiro]
     Full Idea: In a sense, satisfaction is the notion of 'truth in a model', and (as Hodes 1984 elegantly puts it) 'truth in a model' is a model of 'truth'.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 1.1)
     A reaction: So we can say that Tarski doesn't offer a definition of truth itself, but replaces it with a 'model' of truth.
4. Formal Logic / A. Syllogistic Logic / 1. Aristotelian Logic
Aristotelian logic is complete [Shapiro]
     Full Idea: Aristotelian logic is complete.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 2.5)
     A reaction: [He cites Corcoran 1972]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
A set is 'transitive' if contains every member of each of its members [Shapiro]
     Full Idea: If, for every b∈d, a∈b entails that a∈d, the d is said to be 'transitive'. In other words, d is transitive if it contains every member of each of its members.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 4.2)
     A reaction: The alternative would be that the members of the set are subsets, but the members of those subsets are not themselves members of the higher-level set.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice is essential for proving downward Löwenheim-Skolem [Shapiro]
     Full Idea: The axiom of choice is essential for proving the downward Löwenheim-Skolem Theorem.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 4.1)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
Are sets part of logic, or part of mathematics? [Shapiro]
     Full Idea: Is there a notion of set in the jurisdiction of logic, or does it belong to mathematics proper?
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: It immediately strikes me that they might be neither. I don't see that relations between well-defined groups of things must involve number, and I don't see that mapping the relations must intrinsically involve logical consequence or inference.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
Russell's paradox shows that there are classes which are not iterative sets [Shapiro]
     Full Idea: The argument behind Russell's paradox shows that in set theory there are logical sets (i.e. classes) that are not iterative sets.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 1.3)
     A reaction: In his preface, Shapiro expresses doubts about the idea of a 'logical set'. Hence the theorists like the iterative hierarchy because it is well-founded and under control, not because it is comprehensive in scope. See all of pp.19-20.
It is central to the iterative conception that membership is well-founded, with no infinite descending chains [Shapiro]
     Full Idea: In set theory it is central to the iterative conception that the membership relation is well-founded, ...which means there are no infinite descending chains from any relation.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 5.1.4)
Iterative sets are not Boolean; the complement of an iterative set is not an iterative sets [Shapiro]
     Full Idea: Iterative sets do not exhibit a Boolean structure, because the complement of an iterative set is not itself an iterative set.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.1)
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
'Well-ordering' of a set is an irreflexive, transitive, and binary relation with a least element [Shapiro]
     Full Idea: A 'well-ordering' of a set X is an irreflexive, transitive, and binary relation on X in which every non-empty subset of X has a least element.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 5.1.3)
     A reaction: So there is a beginning, an ongoing sequence, and no retracing of steps.
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
There is no 'correct' logic for natural languages [Shapiro]
     Full Idea: There is no question of finding the 'correct' or 'true' logic underlying a part of natural language.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: One needs the context of Shapiro's defence of second-order logic to see his reasons for this. Call me romantic, but I retain faith that there is one true logic. The Kennedy Assassination problem - can't see the truth because drowning in evidence.
Logic is the ideal for learning new propositions on the basis of others [Shapiro]
     Full Idea: A logic can be seen as the ideal of what may be called 'relative justification', the process of coming to know some propositions on the basis of others.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 2.3.1)
     A reaction: This seems to be the modern idea of logic, as opposed to identification of a set of 'logical truths' from which eternal necessities (such as mathematics) can be derived. 'Know' implies that they are true - which conclusions may not be.
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
Can one develop set theory first, then derive numbers, or are numbers more basic? [Shapiro]
     Full Idea: In 1910 Weyl observed that set theory seemed to presuppose natural numbers, and he regarded numbers as more fundamental than sets, as did Fraenkel. Dedekind had developed set theory independently, and used it to formulate numbers.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.2.2)
Skolem and Gödel championed first-order, and Zermelo, Hilbert, and Bernays championed higher-order [Shapiro]
     Full Idea: Skolem and Gödel were the main proponents of first-order languages. The higher-order language 'opposition' was championed by Zermelo, Hilbert, and Bernays.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.2)
Bernays (1918) formulated and proved the completeness of propositional logic [Shapiro]
     Full Idea: Bernays (1918) formulated and proved the completeness of propositional logic, the first precise solution as part of the Hilbert programme.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.2.1)
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
The 'triumph' of first-order logic may be related to logicism and the Hilbert programme, which failed [Shapiro]
     Full Idea: The 'triumph' of first-order logic may be related to the remnants of failed foundationalist programmes early this century - logicism and the Hilbert programme.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: Being complete must also be one of its attractions, and Quine seems to like it because of its minimal ontological commitment.
Maybe compactness, semantic effectiveness, and the Löwenheim-Skolem properties are desirable [Shapiro]
     Full Idea: Tharp (1975) suggested that compactness, semantic effectiveness, and the Löwenheim-Skolem properties are consequences of features one would want a logic to have.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 6.5)
     A reaction: I like this proposal, though Shapiro is strongly against. We keep extending our logic so that we can prove new things, but why should we assume that we can prove everything? That's just what Gödel suggests that we should give up on.
First-order logic was an afterthought in the development of modern logic [Shapiro]
     Full Idea: Almost all the systems developed in the first part of the twentieth century are higher-order; first-order logic was an afterthought.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.1)
The notion of finitude is actually built into first-order languages [Shapiro]
     Full Idea: The notion of finitude is explicitly 'built in' to the systems of first-order languages in one way or another.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 9.1)
     A reaction: Personally I am inclined to think that they are none the worse for that. No one had even thought of all these lovely infinities before 1870, and now we are supposed to change our logic (our actual logic!) to accommodate them. Cf quantum logic.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Henkin semantics has separate variables ranging over the relations and over the functions [Shapiro]
     Full Idea: In 'Henkin' semantics, in a given model the relation variables range over a fixed collection of relations D on the domain, and the function variables range over a collection of functions F on the domain.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 3.3)
Second-order logic is better than set theory, since it only adds relations and operations, and nothing else [Shapiro, by Lavine]
     Full Idea: Shapiro preferred second-order logic to set theory because second-order logic refers only to the relations and operations in a domain, and not to the other things that set-theory brings with it - other domains, higher-order relations, and so forth.
     From: report of Stewart Shapiro (Foundations without Foundationalism [1991]) by Shaughan Lavine - Understanding the Infinite VII.4
In standard semantics for second-order logic, a single domain fixes the ranges for the variables [Shapiro]
     Full Idea: In the standard semantics of second-order logic, by fixing a domain one thereby fixes the range of both the first-order variables and the second-order variables. There is no further 'interpreting' to be done.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 3.3)
     A reaction: This contrasts with 'Henkin' semantics (Idea 13650), or first-order semantics, which involve more than one domain of quantification.
Completeness, Compactness and Löwenheim-Skolem fail in second-order standard semantics [Shapiro]
     Full Idea: The counterparts of Completeness, Compactness and the Löwenheim-Skolem theorems all fail for second-order languages with standard semantics, but hold for Henkin or first-order semantics. Hence such logics are much like first-order logic.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 4.1)
     A reaction: Shapiro votes for the standard semantics, because he wants the greater expressive power, especially for the characterization of infinite structures.
Broad standard semantics, or Henkin semantics with a subclass, or many-sorted first-order semantics? [Shapiro]
     Full Idea: Three systems of semantics for second-order languages: 'standard semantics' (variables cover all relations and functions), 'Henkin semantics' (relations and functions are a subclass) and 'first-order semantics' (many-sorted domains for variable-types).
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: [my summary]
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
If a logic is incomplete, its semantic consequence relation is not effective [Shapiro]
     Full Idea: Second-order logic is inherently incomplete, so its semantic consequence relation is not effective.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 1.2.1)
Semantic consequence is ineffective in second-order logic [Shapiro]
     Full Idea: It follows from Gödel's incompleteness theorem that the semantic consequence relation of second-order logic is not effective. For example, the set of logical truths of any second-order logic is not recursively enumerable. It is not even arithmetic.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: I don't fully understand this, but it sounds rather major, and a good reason to avoid second-order logic (despite Shapiro's proselytising). See Peter Smith on 'effectively enumerable'.
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Finding the logical form of a sentence is difficult, and there are no criteria of correctness [Shapiro]
     Full Idea: It is sometimes difficult to find a formula that is a suitable counterpart of a particular sentence of natural language, and there is no acclaimed criterion for what counts as a good, or even acceptable, 'translation'.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 1.1)
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
We might reduce ontology by using truth of sentences and terms, instead of using objects satisfying models [Shapiro]
     Full Idea: The main role of substitutional semantics is to reduce ontology. As an alternative to model-theoretic semantics for formal languages, the idea is to replace the 'satisfaction' relation of formulas (by objects) with the 'truth' of sentences (using terms).
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 9.1.4)
     A reaction: I find this very appealing, and Ruth Barcan Marcus is the person to look at. My intuition is that logic should have no ontology at all, as it is just about how inference works, not about how things are. Shapiro offers a compromise.
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
'Satisfaction' is a function from models, assignments, and formulas to {true,false} [Shapiro]
     Full Idea: The 'satisfaction' relation may be thought of as a function from models, assignments, and formulas to the truth values {true,false}.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 1.1)
     A reaction: This at least makes clear that satisfaction is not the same as truth. Now you have to understand how Tarski can define truth in terms of satisfaction.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Semantics for models uses set-theory [Shapiro]
     Full Idea: Typically, model-theoretic semantics is formulated in set theory.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 2.5.1)
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
An axiomatization is 'categorical' if its models are isomorphic, so there is really only one interpretation [Shapiro]
     Full Idea: An axiomatization is 'categorical' if all its models are isomorphic to one another; ..hence it has 'essentially only one' interpretation [Veblen 1904].
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 1.2.1)
Categoricity can't be reached in a first-order language [Shapiro]
     Full Idea: Categoricity cannot be attained in a first-order language.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.3)
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The Löwenheim-Skolem theorems show an explosion of infinite models, so 1st-order is useless for infinity [Shapiro]
     Full Idea: The Löwenheim-Skolem theorems mean that no first-order theory with an infinite model is categorical. If Γ has an infinite model, then it has a model of every infinite cardinality. So first-order languages cannot characterize infinite structures.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 4.1)
     A reaction: So much of the debate about different logics hinges on characterizing 'infinite structures' - whatever they are! Shapiro is a leading structuralist in mathematics, so he wants second-order logic to help with his project.
Downward Löwenheim-Skolem: each satisfiable countable set always has countable models [Shapiro]
     Full Idea: A language has the Downward Löwenheim-Skolem property if each satisfiable countable set of sentences has a model whose domain is at most countable.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 6.5)
     A reaction: This means you can't employ an infinite model to represent a fact about a countable set.
Upward Löwenheim-Skolem: each infinite model has infinite models of all sizes [Shapiro]
     Full Idea: A language has the Upward Löwenheim-Skolem property if for each set of sentences whose model has an infinite domain, then it has a model at least as big as each infinite cardinal.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 6.5)
     A reaction: This means you can't have a countable model to represent a fact about infinite sets.
Substitutional semantics only has countably many terms, so Upward Löwenheim-Skolem trivially fails [Shapiro]
     Full Idea: The Upward Löwenheim-Skolem theorem fails (trivially) with substitutional semantics. If there are only countably many terms of the language, then there are no uncountable substitution models.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 9.1.4)
     A reaction: Better and better. See Idea 13674. Why postulate more objects than you can possibly name? I'm even suspicious of all real numbers, because you can't properly define them in finite terms. Shapiro objects that the uncountable can't be characterized.
5. Theory of Logic / K. Features of Logics / 3. Soundness
'Weakly sound' if every theorem is a logical truth; 'sound' if every deduction is a semantic consequence [Shapiro]
     Full Idea: A logic is 'weakly sound' if every theorem is a logical truth, and 'strongly sound', or simply 'sound', if every deduction from Γ is a semantic consequence of Γ. Soundness indicates that the deductive system is faithful to the semantics.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 1.1)
     A reaction: Similarly, 'weakly complete' is when every logical truth is a theorem.
5. Theory of Logic / K. Features of Logics / 4. Completeness
We can live well without completeness in logic [Shapiro]
     Full Idea: We can live without completeness in logic, and live well.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: This is the kind of heady suggestion that American philosophers love to make. Sounds OK to me, though. Our ability to draw good inferences should be expected to outrun our ability to actually prove them. Completeness is for wimps.
5. Theory of Logic / K. Features of Logics / 6. Compactness
Non-compactness is a strength of second-order logic, enabling characterisation of infinite structures [Shapiro]
     Full Idea: It is sometimes said that non-compactness is a defect of second-order logic, but it is a consequence of a crucial strength - its ability to give categorical characterisations of infinite structures.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: The dispute between fans of first- and second-order may hinge on their attitude to the infinite. I note that Skolem, who was not keen on the infinite, stuck to first-order. Should we launch a new Skolemite Crusade?
Compactness is derived from soundness and completeness [Shapiro]
     Full Idea: Compactness is a corollary of soundness and completeness. If Γ is not satisfiable, then, by completeness, Γ is not consistent. But the deductions contain only finite premises. So a finite subset shows the inconsistency.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 4.1)
     A reaction: [this is abbreviated, but a proof of compactness] Since all worthwhile logics are sound, this effectively means that completeness entails compactness.
5. Theory of Logic / K. Features of Logics / 9. Expressibility
A language is 'semantically effective' if its logical truths are recursively enumerable [Shapiro]
     Full Idea: A logical language is 'semantically effective' if the collection of logically true sentences is a recursively enumerable set of strings.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 6.5)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Complex numbers can be defined as reals, which are defined as rationals, then integers, then naturals [Shapiro]
     Full Idea: 'Definitions' of integers as pairs of naturals, rationals as pairs of integers, reals as Cauchy sequences of rationals, and complex numbers as pairs of reals are reductive foundations of various fields.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 2.1)
     A reaction: On p.30 (bottom) Shapiro objects that in the process of reduction the numbers acquire properties they didn't have before.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
Only higher-order languages can specify that 0,1,2,... are all the natural numbers that there are [Shapiro]
     Full Idea: The main problem of characterizing the natural numbers is to state, somehow, that 0,1,2,.... are all the numbers that there are. We have seen that this can be accomplished with a higher-order language, but not in a first-order language.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 9.1.4)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Natural numbers are the finite ordinals, and integers are equivalence classes of pairs of finite ordinals [Shapiro]
     Full Idea: By convention, the natural numbers are the finite ordinals, the integers are certain equivalence classes of pairs of finite ordinals, etc.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 9.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The 'continuum' is the cardinality of the powerset of a denumerably infinite set [Shapiro]
     Full Idea: The 'continuum' is the cardinality of the powerset of a denumerably infinite set.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 5.1.2)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
First-order arithmetic can't even represent basic number theory [Shapiro]
     Full Idea: Few theorists consider first-order arithmetic to be an adequate representation of even basic number theory.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 5 n28)
     A reaction: This will be because of Idea 13656. Even 'basic' number theory will include all sorts of vast infinities, and that seems to be where the trouble is.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Some sets of natural numbers are definable in set-theory but not in arithmetic [Shapiro]
     Full Idea: There are sets of natural numbers definable in set-theory but not in arithmetic.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 5.3.3)
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Logicism is distinctive in seeking a universal language, and denying that logic is a series of abstractions [Shapiro]
     Full Idea: It is claimed that aiming at a universal language for all contexts, and the thesis that logic does not involve a process of abstraction, separates the logicists from algebraists and mathematicians, and also from modern model theory.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.1)
     A reaction: I am intuitively drawn to the idea that logic is essentially the result of a series of abstractions, so this gives me a further reason not to be a logicist. Shapiro cites Goldfarb 1979 and van Heijenoort 1967. Logicists reduce abstraction to logic.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Mathematics and logic have no border, and logic must involve mathematics and its ontology [Shapiro]
     Full Idea: I extend Quinean holism to logic itself; there is no sharp border between mathematics and logic, especially the logic of mathematics. One cannot expect to do logic without incorporating some mathematics and accepting at least some of its ontology.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: I have strong sales resistance to this proposal. Mathematics may have hijacked logic and warped it for its own evil purposes, but if logic is just the study of inferences then it must be more general than to apply specifically to mathematics.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Some reject formal properties if they are not defined, or defined impredicatively [Shapiro]
     Full Idea: Some authors (Poincaré and Russell, for example) were disposed to reject properties that are not definable, or are definable only impredicatively.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.1)
     A reaction: I take Quine to be the culmination of this line of thought, with his general rejection of 'attributes' in logic and in metaphysics.
7. Existence / C. Structure of Existence / 2. Reduction
Reduction can be by identity, or constitution, or elimination [Parfit, by PG]
     Full Idea: We can distinguish Identifying Reductionism (as in 'persons are bodies'), or Constitutive Reductionism (as in 'persons are distinct, but consist of thoughts etc.'), or Eliminative Reductionism (as in 'there are no persons, only thoughts etc.').
     From: report of Derek Parfit (The Unimportance of Identity [1995], p.295) by PG - Db (ideas)
     A reaction: Constitutive Reductionism seems the most common one, as in 'chemistry just consists of lots of complicated physics'. He doesn't mention bridge laws, which are presumably only required in more complicated cases of constitutive reduction.
8. Modes of Existence / B. Properties / 10. Properties as Predicates
Properties are often seen as intensional; equiangular and equilateral are different, despite identity of objects [Shapiro]
     Full Idea: Properties are often taken to be intensional; equiangular and equilateral are thought to be different properties of triangles, even though any triangle is equilateral if and only if it is equiangular.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 1.3)
     A reaction: Many logicians seem to want to treat properties as sets of objects (red being just the set of red things), but this looks like a desperate desire to say everything in first-order logic, where only objects are available to quantify over.
16. Persons / D. Continuity of the Self / 1. Identity and the Self
Psychologists are interested in identity as a type of person, but philosophers study numerical identity [Parfit]
     Full Idea: When psychologists discuss identity, they are typically concerned with the kind of person someone is, or wants to be (as in an 'identity crisis'). But when philosophers discuss identity, it is numerical identity they mean.
     From: Derek Parfit (The Unimportance of Identity [1995], p.293)
     A reaction: I think it is important to note that the philosophical problem breaks down into two areas: whether I have numerical identity with myself over time, and whether other people have it. It may be that two different sets of criteria will emerge.
16. Persons / D. Continuity of the Self / 2. Mental Continuity / b. Self as mental continuity
If my brain-halves are transplanted into two bodies, I have continuity, and don't need identity [Parfit]
     Full Idea: If the two halves of my brain are transplanted into different bodies just like mine, they cannot both be me, since that would make them the same person. ..But my relation to these two contains everything that matters, so identity is not what matters.
     From: Derek Parfit (The Unimportance of Identity [1995], p.314)
     A reaction: I challenge his concept of what 'matters'. He has a rather solipsistic view of the problem, and I take Parfit to be a rather unsociable person, since his friends and partner will be keenly interested in the identities of the new beings.
Over a period of time what matters is not that 'I' persist, but that I have psychological continuity [Parfit]
     Full Idea: We should revise our view about identity over time: what matters isn't that there will be someone alive who will be me; it is rather that there should be at least one living person who will be psychologically continuous with me as I am now.
     From: Derek Parfit (The Unimportance of Identity [1995], p.316)
     A reaction: Parfit and Locke seem to agree on this, and it is no accident that they both like 'science fiction' examples. Apparently Parfit wouldn't bat an eyelid if someone threatened to cut his corpus callosum. I rate it as a catastrophe for my current existence.
16. Persons / D. Continuity of the Self / 4. Split Consciousness
It is fine to save two dying twins by merging parts of their bodies into one, and identity is irrelevant [Parfit]
     Full Idea: If I am largely paralysed, and my twin brother is dying of brain disease, then if the operation to graft my head onto his body is offered, I should accept the operation, and it is irrelevant whether this person would be me.
     From: Derek Parfit (The Unimportance of Identity [1995], p.308)
     A reaction: Parfit notes that the brain is a particularly significant part of the process. The fact that I might cheerfully accept this offer without philosophical worries doesn't get rid of the question 'who is this person?' Who should they remain married to?
If two humans are merged surgically, the new identity is a purely verbal problem [Parfit]
     Full Idea: If there is someone with my head and my brother's body, it is a merely verbal question whether that person will be me, and that is why, even if it won't be me, that doesn't matter. ..What matters is not identity, but the facts of which identity consists.
     From: Derek Parfit (The Unimportance of Identity [1995], p.310)
     A reaction: It strikes me that from the subjective psychological point of view identity is of little interest, but from the objective external viewpoint (e.g. the forensic one) such questions are highly significant, and rightly so.
16. Persons / E. Rejecting the Self / 4. Denial of the Self
It doesn't matter whether I exist with half my components replaced (any more than an audio system) [Parfit]
     Full Idea: It is quite uninteresting whether, with half its components replaced, I have the same audio system, and also whether I exist if half of my body were simultaneously replaced.
     From: Derek Parfit (The Unimportance of Identity [1995], p.302)
     A reaction: It is impossible to deny this, if the part replaced is not the brain. My doubt about Parfit's thesis is that while I may not care whether some modified thing is still me, my lawyers and the police might be very concerned.
23. Ethics / C. Virtue Theory / 3. Virtues / a. Virtues
The six perfections are giving, morality, patience, vigour, meditation, and wisdom [Nagarjuna]
     Full Idea: The six perfections are of giving, morality, patience, vigour, meditation, and wisdom.
     From: Nagarjuna (Mahaprajnaparamitashastra [c.120], 88)
     A reaction: What is 'morality', if giving is not part of it? I like patience and vigour being two of the virtues, which immediately implies an Aristotelian mean (which is always what is 'appropriate').