Combining Texts

All the ideas for 'Mahaprajnaparamitashastra', 'Structures and Structuralism in Phil of Maths' and 'The Elm and the Expert'

unexpand these ideas     |    start again     |     specify just one area for these texts


49 ideas

2. Reason / A. Nature of Reason / 8. Naturalising Reason
A standard naturalist view is realist, externalist, and computationalist, and believes in rationality [Fodor]
     Full Idea: There seems to be an emerging naturalist consensus that is Realist in ontology and epistemology, externalist in semantics, and computationalist in cognitive psychology, which nicely allows us to retain our understanding of ourselves as rational creatures.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
3. Truth / A. Truth Problems / 5. Truth Bearers
Psychology has to include the idea that mental processes are typically truth-preserving [Fodor]
     Full Idea: A psychology that can't make sense of such facts as that mental processes are typically truth-preserving is ipso facto dead in the water.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §1.3)
3. Truth / F. Semantic Truth / 2. Semantic Truth
While true-in-a-model seems relative, true-in-all-models seems not to be [Reck/Price]
     Full Idea: While truth can be defined in a relative way, as truth in one particular model, a non-relative notion of truth is implied, as truth in all models.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: [The article is actually discussing arithmetic] This idea strikes me as extremely important. True-in-all-models is usually taken to be tautological, but it does seem to give a more universal notion of truth. See semantic truth, Tarski, Davidson etc etc.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
ZFC set theory has only 'pure' sets, without 'urelements' [Reck/Price]
     Full Idea: In standard ZFC ('Zermelo-Fraenkel with Choice') set theory we deal merely with pure sets, not with additional urelements.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: The 'urelements' would the actual objects that are members of the sets, be they physical or abstract. This idea is crucial to understanding philosophy of mathematics, and especially logicism. Must the sets exist, just as the urelements do?
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
Inferences are surely part of the causal structure of the world [Fodor]
     Full Idea: Inferences are surely part of the causal structure of the world.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §3)
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Three types of variable in second-order logic, for objects, functions, and predicates/sets [Reck/Price]
     Full Idea: In second-order logic there are three kinds of variables, for objects, for functions, and for predicates or sets.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: It is interesting that a predicate seems to be the same as a set, which begs rather a lot of questions. For those who dislike second-order logic, there seems nothing instrinsically wicked in having variables ranging over innumerable multi-order types.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
'Analysis' is the theory of the real numbers [Reck/Price]
     Full Idea: 'Analysis' is the theory of the real numbers.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: 'Analysis' began with the infinitesimal calculus, which later built on the concept of 'limit'. A continuum of numbers seems to be required to make that work.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Mereological arithmetic needs infinite objects, and function definitions [Reck/Price]
     Full Idea: The difficulties for a nominalistic mereological approach to arithmetic is that an infinity of physical objects are needed (space-time points? strokes?), and it must define functions, such as 'successor'.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: Many ontologically austere accounts of arithmetic are faced with the problem of infinity. The obvious non-platonist response seems to be a modal or if-then approach. To postulate infinite abstract or physical entities so that we can add 3 and 2 is mad.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Peano Arithmetic can have three second-order axioms, plus '1' and 'successor' [Reck/Price]
     Full Idea: A common formulation of Peano Arithmetic uses 2nd-order logic, the constant '1', and a one-place function 's' ('successor'). Three axioms then give '1 is not a successor', 'different numbers have different successors', and induction.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: This is 'second-order' Peano Arithmetic, though it is at least as common to formulate in first-order terms (only quantifying over objects, not over properties - as is done here in the induction axiom). I like the use of '1' as basic instead of '0'!
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set-theory gives a unified and an explicit basis for mathematics [Reck/Price]
     Full Idea: The merits of basing an account of mathematics on set theory are that it allows for a comprehensive unified treatment of many otherwise separate branches of mathematics, and that all assumption, including existence, are explicit in the axioms.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I am forming the impression that set-theory provides one rather good model (maybe the best available) for mathematics, but that doesn't mean that mathematics is set-theory. The best map of a landscape isn't a landscape.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism emerged from abstract algebra, axioms, and set theory and its structures [Reck/Price]
     Full Idea: Structuralism has emerged from the development of abstract algebra (such as group theory), the creation of axiom systems, the introduction of set theory, and Bourbaki's encyclopaedic survey of set theoretic structures.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: In other words, mathematics has gradually risen from one level of abstraction to the next, so that mathematical entities like points and numbers receive less and less attention, with relationships becoming more prominent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Relativist Structuralism just stipulates one successful model as its arithmetic [Reck/Price]
     Full Idea: Relativist Structuralism simply picks one particular model of axiomatised arithmetic (i.e. one particular interpretation that satisfies the axioms), and then stipulates what the elements, functions and quantifiers refer to.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: The point is that a successful model can be offered, and it doesn't matter which one, like having any sort of aeroplane, as long as it flies. I don't find this approach congenial, though having a model is good. What is the essence of flight?
There are 'particular' structures, and 'universal' structures (what the former have in common) [Reck/Price]
     Full Idea: The term 'structure' has two uses in the literature, what can be called 'particular structures' (which are particular relational systems), but also what can be called 'universal structures' - what particular systems share, or what they instantiate.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §6)
     A reaction: This is a very helpful distinction, because it clarifies why (rather to my surprise) some structuralists turn out to be platonists in a new guise. Personal my interest in structuralism has been anti-platonist from the start.
Pattern Structuralism studies what isomorphic arithmetic models have in common [Reck/Price]
     Full Idea: According to 'pattern' structuralism, what we study are not the various particular isomorphic models of arithmetic, but something in addition to them: a corresponding pattern.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §7)
     A reaction: Put like that, we have to feel a temptation to wield Ockham's Razor. It's bad enough trying to give the structure of all the isomorphic models, without seeking an even more abstract account of underlying patterns. But patterns connect to minds..
There are Formalist, Relativist, Universalist and Pattern structuralism [Reck/Price]
     Full Idea: There are four main variants of structuralism in the philosophy of mathematics - formalist structuralism, relativist structuralism, universalist structuralism (with modal variants), and pattern structuralism.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §9)
     A reaction: I'm not sure where Chihara's later book fits into this, though it is at the nominalist end of the spectrum. Shapiro and Resnik do patterns (the latter more loosely); Hellman does modal universalism; Quine does the relativist version. Dedekind?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Formalist Structuralism says the ontology is vacuous, or formal, or inference relations [Reck/Price]
     Full Idea: Formalist Structuralism endorses structural methodology in mathematics, but rejects semantic and metaphysical problems as either meaningless, or purely formal, or as inference relations.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §3)
     A reaction: [very compressed] I find the third option fairly congenial, certainly in preference to rather platonist accounts of structuralism. One still needs to distinguish the mathematical from the non-mathematical in the inference relations.
Maybe we should talk of an infinity of 'possible' objects, to avoid arithmetic being vacuous [Reck/Price]
     Full Idea: It is tempting to take a modal turn, and quantify over all possible objects, because if there are only a finite number of actual objects, then there are no models (of the right sort) for Peano Arithmetic, and arithmetic is vacuously true.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: [compressed; Geoffrey Hellman is the chief champion of this view] The article asks whether we are not still left with the puzzle of whether infinitely many objects are possible, instead of existent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Universalist Structuralism is based on generalised if-then claims, not one particular model [Reck/Price]
     Full Idea: Universalist Structuralism is a semantic thesis, that an arithmetical statement asserts a universal if-then statement. We build an if-then statement (using quantifiers) into the structure, and we generalise away from any one particular model.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: There remains the question of what is distinctively mathematical about the highly generalised network of inferences that is being described. Presumable the axioms capture that, but why those particular axioms? Russell is cited as an originator.
Universalist Structuralism eliminates the base element, as a variable, which is then quantified out [Reck/Price]
     Full Idea: Universalist Structuralism is eliminativist about abstract objects, in a distinctive form. Instead of treating the base element (say '1') as an ambiguous referring expression (the Relativist approach), it is a variable which is quantified out.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: I am a temperamental eliminativist on this front (and most others) so this is tempting. I am also in love with the concept of a 'variable', which I take to be utterly fundamental to all conceptual thought, even in animals, and not just a trick of algebra.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
The existence of an infinite set is assumed by Relativist Structuralism [Reck/Price]
     Full Idea: Relativist Structuralism must first assume the existence of an infinite set, otherwise there would be no model to pick, and arithmetical terms would have no reference.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: See Idea 10169 for Relativist Structuralism. They point out that ZFC has an Axiom of Infinity.
8. Modes of Existence / E. Nominalism / 6. Mereological Nominalism
A nominalist might avoid abstract objects by just appealing to mereological sums [Reck/Price]
     Full Idea: One way for a nominalist to reject appeal to all abstract objects, including sets, is to only appeal to nominalistically acceptable objects, including mereological sums.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I'm suddenly thinking that this looks very interesting and might be the way to go. The issue seems to be whether mereological sums should be seen as constrained by nature, or whether they are unrestricted. See Mereology in Ontology...|Intrinsic Identity.
13. Knowledge Criteria / C. External Justification / 5. Controlling Beliefs
Control of belief is possible if you know truth conditions and what causes beliefs [Fodor]
     Full Idea: Premeditated cognitive management is possible if knowing the contents of one's thoughts would tell you what would make them true and what would cause you to have them.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
     A reaction: I love the idea of 'cognitive management'. Since belief is fairly involuntary, I subject myself to the newspapers, books, TV and conversation which will create the style of beliefs to which I aspire. Why?
14. Science / A. Basis of Science / 3. Experiment
An experiment is a deliberate version of what informal thinking does all the time [Fodor]
     Full Idea: Experimentation is an occasional and more or less self-conscious exercise in what informal thinking does all the time without thinking about it.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
We can deliberately cause ourselves to have true thoughts - hence the value of experiments [Fodor]
     Full Idea: A creature that knows what makes its thoughts true and what would cause it to have them, could therefore cause itself to have true thoughts. …This would explain why experimentation is so close to the heart of our cognitive style.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
Interrogation and experiment submit us to having beliefs caused [Fodor]
     Full Idea: You can put yourself into a situation where you may be caused to believe that P. Putting a question to someone who is in the know is one species of this behaviour, and putting a question to Nature (an experiment) is another.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
Participation in an experiment requires agreement about what the outcome will mean [Fodor]
     Full Idea: To be in the audience for an experiment you have to believe what the experimenter believes about what the outcome would mean, but not necessarily what the outcome will be.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
14. Science / B. Scientific Theories / 1. Scientific Theory
Theories are links in the causal chain between the environment and our beliefs [Fodor]
     Full Idea: Theories function as links in the causal chains that run from environmental outcomes to the beliefs that they cause the inquirer to have.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
15. Nature of Minds / A. Nature of Mind / 1. Mind / e. Questions about mind
I say psychology is intentional, semantics is informational, and thinking is computation [Fodor]
     Full Idea: I hold that psychological laws are intentional, that semantics is purely informational, and that thinking is computation (and that it is possible to hold all of these assumptions at once).
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
     A reaction: When he puts it baldly like that, it doesn't sound terribly persuasive. Thinking is 'computation'? Raw experience is irrelevant? What is it 'like' to spot an interesting connection between two propositions or concepts? It's not like adding 7 and 5.
15. Nature of Minds / B. Features of Minds / 1. Consciousness / f. Higher-order thought
We are probably the only creatures that can think about our own thoughts [Fodor]
     Full Idea: I think it is likely that we are the only creatures that can think about the contents of our thoughts.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
     A reaction: I think this is a major idea. If you ask me the traditional question - what is the essential difference between us and other animals? - this is my answer (not language, or reason). We are the metathinkers.
17. Mind and Body / A. Mind-Body Dualism / 2. Interactionism
Cartesians consider interaction to be a miracle [Fodor]
     Full Idea: The Cartesian view is that the interaction problem does arise, but is unsolvable because interaction is miraculous.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
     A reaction: A rather unsympathetic statement of the position. Cartesians might think that God could explain to us how interaction works. Cartesians are not mysterians, I think, but they see no sign of any theory of interaction.
Semantics v syntax is the interaction problem all over again [Fodor]
     Full Idea: The question how mental representations could be both semantic, like propositions, and causal, like rocks, trees, and neural firings, is arguably just the interaction problem all over again.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
     A reaction: Interesting way of presenting the problem. If you seem to be confronting the interaction problem, you have probably drifted into a bogus dualist way of thinking. Retreat, and reformulate you questions and conceptual apparatus, till the question vanishes.
17. Mind and Body / E. Mind as Physical / 1. Physical Mind
Type physicalism equates mental kinds with physical kinds [Fodor]
     Full Idea: Type physicalism is, roughly, the doctrine that psychological kinds are identical to neurological kinds.
     From: Jerry A. Fodor (The Elm and the Expert [1993], App A n.1)
     A reaction: This gets my general support, leaving open the nature of 'kinds'. Presumably the identity is strict, as in 'Hesperus is identical to Phosphorus'. It seems unlikely that if you and I think the 'same' thought, that we have strictly identical brain states.
17. Mind and Body / E. Mind as Physical / 4. Connectionism
Hume has no theory of the co-ordination of the mind [Fodor]
     Full Idea: What Hume didn't see was that the causal and representational properties of mental symbols have somehow to be coordinated if the coherence of mental life is to be accounted for.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
     A reaction: Certainly the idea that it all somehow becomes magic at the point where the brain represents the world is incoherent - but it is a bit magical. How can the whole of my garden be in my brain? Weird.
18. Thought / A. Modes of Thought / 2. Propositional Attitudes
Propositional attitudes are propositions presented in a certain way [Fodor]
     Full Idea: Propositional attitudes are really three-place relations, between a creature, a proposition, and a mode of presentation (which are sentences of Mentalese).
     From: Jerry A. Fodor (The Elm and the Expert [1993], §2.II)
     A reaction: I'm not sure about 'really'! Why do we need a creature? Isn't 'hoping it will rain' a propositional attitude which some creature may or may not have? Fodor wants it to be physical, but it's abstract?
18. Thought / A. Modes of Thought / 5. Rationality / a. Rationality
Rationality has mental properties - autonomy, productivity, experiment [Fodor]
     Full Idea: Mentalism isn't gratuitous; you need it to explain rationality. Mental causation buys you behaviours that are unlike reflexes in at least three ways: they're autonomous, they're productive, and they're experimental.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
     A reaction: He makes his three ways sound all-or-nothing, which is (I believe) the single biggest danger when thinking about the mind. "Either you are conscious, or you are not..."
18. Thought / C. Content / 5. Twin Earth
XYZ (Twin Earth 'water') is an impossibility [Fodor]
     Full Idea: There isn't any XYZ, and there couldn't be any, and so we don't have to worry about it.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §2.I)
     A reaction: Jadeite and Nephrite are real enough, which are virtually indistinguishable variants of jade. You just need Twin Jewellers instead of Twin Earths. We could build them, and employ twins to work there.
18. Thought / C. Content / 6. Broad Content
Truth conditions require a broad concept of content [Fodor]
     Full Idea: We need the idea of broad content to make sense of the fact that thoughts have the truth-conditions that they do.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §2.II)
     A reaction: There seems to be (as Dummett points out) a potential circularity here, as you can hardly know the truth-conditions of something if you don't already know its content.
18. Thought / C. Content / 7. Narrow Content
Concepts aren't linked to stuff; they are what is caused by stuff [Fodor]
     Full Idea: If the words of 'Swamp Man' (spontaneously created, with concepts) are about XYZ on Twin Earth, it is not because he's causally connected to the stuff, but because XYZ would cause his 'water' tokens (in the absence of H2O).
     From: Jerry A. Fodor (The Elm and the Expert [1993], App B)
     A reaction: The sight of the Eiffel tower causes my 'France' tokens, so is my word "France" about the Eiffel Tower? What would cause my 'nothing' tokens?
18. Thought / C. Content / 10. Causal Semantics
Knowing the cause of a thought is almost knowing its content [Fodor]
     Full Idea: If you know the content of a thought, you know quite a lot about what would cause you to have it.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
     A reaction: I'm not sure where this fits into the great jigsaw of the mind, but it strikes me as an acute and important observation. The truth of a thought is not essential to make you have it. Ask Othello.
18. Thought / C. Content / 12. Informational Semantics
Is content basically information, fixed externally? [Fodor]
     Full Idea: I assume intentional content reduces (in some way) to information. …The content of a thought depends on its external relations; on the way that the thought is related to the world, not the way that it is related to other thoughts.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §1.2)
     A reaction: Does this make Fodor a 'weak' functionalist? The 'strong' version would say a thought is merely a location in a flow diagram, but Fodor's 'mentalism' includes a further 'content' in each diagram box.
18. Thought / D. Concepts / 3. Ontology of Concepts / b. Concepts as abilities
In the information view, concepts are potentials for making distinctions [Fodor]
     Full Idea: Semantics, according to the informational view, is mostly about counterfactuals; what counts for the identity of my concepts is not what I do distinguish but what I could distinguish if I cared to (even using instruments and experts).
     From: Jerry A. Fodor (The Elm and the Expert [1993], §2.I)
     A reaction: We all differ in our discriminations (and awareness of expertise), so our concepts would differ, which is bad news for communication (see Idea 223). The view has some plausibility, though.
19. Language / A. Nature of Meaning / 1. Meaning
Semantic externalism says the concept 'elm' needs no further beliefs or inferences [Fodor]
     Full Idea: It is the essence of semantic externalism that there is nothing that you have to believe, there are no inferences that you have to accept, to have the concept 'elm'.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §2.I)
     A reaction: [REMINDER: broad content is filed in 18.C.7, under 'Thought' rather than under language. That is because I am a philospher of thought, rather than of language.
If meaning is information, that establishes the causal link between the state of the world and our beliefs [Fodor]
     Full Idea: It is the causal connection between the state of the world and the contents of beliefs that the reduction of meaning to information is designed to insure.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
     A reaction: I'm not clear why characterising the contents of a belief in terms of its information has to amount to a 'reduction'. A cup of tea isn't reduced to tea. Connections imply duality.
19. Language / A. Nature of Meaning / 4. Meaning as Truth-Conditions
To know the content of a thought is to know what would make it true [Fodor]
     Full Idea: If you know the content of a thought, you thereby know what would make the thought true.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
     A reaction: The truthmaker might by physically impossible, and careful thought might show it to be contradictory - but that wouldn't destroy the meaning.
19. Language / A. Nature of Meaning / 7. Meaning Holism / b. Language holism
For holists no two thoughts are ever quite the same, which destroys faith in meaning [Fodor]
     Full Idea: If what you are thinking depends on all of what you believe, then nobody ever thinks the same thing twice. …That is why so many semantic holists (Quine, Putnam, Rorty, Churchland, probably Wittgenstein) end up being semantic eliminativists.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §1.2b)
     A reaction: If linguistic holism is nonsense, this is easily settled. What I say about breakfast is not changed by reading some Gibbon yesterday.
19. Language / B. Reference / 4. Descriptive Reference / a. Sense and reference
It is claimed that reference doesn't fix sense (Jocasta), and sense doesn't fix reference (Twin Earth) [Fodor]
     Full Idea: The standard view is that Frege cases [knowing Jocasta but not mother] show that reference doesn't determine sense, and Twin cases [knowing water but not H2O] show that sense doesn't determine reference.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §1.3)
     A reaction: How about 'references don't contain much information', and 'descriptions may not fix what they are referring to'? Simple really.
19. Language / C. Assigning Meanings / 2. Semantics
Broad semantics holds that the basic semantic properties are truth and denotation [Fodor]
     Full Idea: Broad semantic theories generally hold that the basic semantic properties of thoughts are truth and denotation.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §1.2b)
     A reaction: I think truth and denotation are the basic semantic properties, but I am dubious about whole-hearted broad semantic theories, so I seem to have gone horribly wrong somewhere.
19. Language / C. Assigning Meanings / 6. Truth-Conditions Semantics
Externalist semantics are necessary to connect the contents of beliefs with how the world is [Fodor]
     Full Idea: You need an externalist semantics to explain why the contents of beliefs should have anything to do with how the world is.
     From: Jerry A. Fodor (The Elm and the Expert [1993], §4)
     A reaction: Since externalist semantics only emerged in the 1970s, that implies that no previous theory had any notion that language had some connection to how the world is. Eh?
23. Ethics / C. Virtue Theory / 3. Virtues / a. Virtues
The six perfections are giving, morality, patience, vigour, meditation, and wisdom [Nagarjuna]
     Full Idea: The six perfections are of giving, morality, patience, vigour, meditation, and wisdom.
     From: Nagarjuna (Mahaprajnaparamitashastra [c.120], 88)
     A reaction: What is 'morality', if giving is not part of it? I like patience and vigour being two of the virtues, which immediately implies an Aristotelian mean (which is always what is 'appropriate').