Combining Texts

All the ideas for 'Mahaprajnaparamitashastra', 'Grundgesetze der Arithmetik 1 (Basic Laws)' and 'On Formally Undecidable Propositions'

unexpand these ideas     |    start again     |     specify just one area for these texts


28 ideas

3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
Prior to Gödel we thought truth in mathematics consisted in provability [Gödel, by Quine]
     Full Idea: Gödel's proof wrought an abrupt turn in the philosophy of mathematics. We had supposed that truth, in mathematics, consisted in provability.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Willard Quine - Forward to Gödel's Unpublished
     A reaction: This explains the crisis in the early 1930s, which Tarski's theory appeared to solve.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Gödel show that the incompleteness of set theory was a necessity [Gödel, by Hallett,M]
     Full Idea: Gödel's incompleteness results of 1931 show that all axiom systems precise enough to satisfy Hilbert's conception are necessarily incomplete.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Michael Hallett - Introduction to Zermelo's 1930 paper p.1215
     A reaction: [Hallett italicises 'necessarily'] Hilbert axioms have to be recursive - that is, everything in the system must track back to them.
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Frege considered definite descriptions to be genuine singular terms [Frege, by Fitting/Mendelsohn]
     Full Idea: Frege (1893) considered a definite description to be a genuine singular term (as we do), so that a sentence like 'The present King of France is bald' would have the same logical form as 'Harry Truman is bald'.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893]) by M Fitting/R Mendelsohn - First-Order Modal Logic
     A reaction: The difficulty is what the term refers to, and they embrace a degree of Meinongianism - that is that non-existent objects can still have properties attributed to them, and so can be allowed some sort of 'existence'.
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
Contradiction arises from Frege's substitutional account of second-order quantification [Dummett on Frege]
     Full Idea: The contradiction in Frege's system is due to the presence of second-order quantification, ..and Frege's explanation of the second-order quantifier, unlike that which he provides for the first-order one, appears to be substitutional rather than objectual.
     From: comment on Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893], §25) by Michael Dummett - Frege philosophy of mathematics Ch.17
     A reaction: In Idea 9871 Dummett adds the further point that Frege lacks a clear notion of the domain of quantification. At this stage I don't fully understand this idea, but it is clearly of significance, so I will return to it.
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
The limitations of axiomatisation were revealed by the incompleteness theorems [Gödel, by Koellner]
     Full Idea: The inherent limitations of the axiomatic method were first brought to light by the incompleteness theorems.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Koellner - On the Question of Absolute Undecidability 1.1
5. Theory of Logic / K. Features of Logics / 2. Consistency
Second Incompleteness: nice theories can't prove their own consistency [Gödel, by Smith,P]
     Full Idea: Second Incompleteness Theorem: roughly, nice theories that include enough basic arithmetic can't prove their own consistency.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 1.5
     A reaction: On the face of it, this sounds less surprising than the First Theorem. Philosophers have often noticed that it seems unlikely that you could use reason to prove reason, as when Descartes just relies on 'clear and distinct ideas'.
5. Theory of Logic / K. Features of Logics / 3. Soundness
If soundness can't be proved internally, 'reflection principles' can be added to assert soundness [Gödel, by Halbach/Leigh]
     Full Idea: Gödel showed PA cannot be proved consistent from with PA. But 'reflection principles' can be added, which are axioms partially expressing the soundness of PA, by asserting what is provable. A Global Reflection Principle asserts full soundness.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Halbach,V/Leigh,G.E. - Axiomatic Theories of Truth (2013 ver) 1.2
     A reaction: The authors point out that this needs a truth predicate within the language, so disquotational truth won't do, and there is a motivation for an axiomatic theory of truth.
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
The undecidable sentence can be decided at a 'higher' level in the system [Gödel]
     Full Idea: My undecidable arithmetical sentence ...is not at all absolutely undecidable; rather, one can always pass to 'higher' systems in which the sentence in question is decidable.
     From: Kurt Gödel (On Formally Undecidable Propositions [1931]), quoted by Peter Koellner - On the Question of Absolute Undecidability 1.1
     A reaction: [a 1931 MS] He says the reals are 'higher' than the naturals, and the axioms of set theory are higher still. The addition of a truth predicate is part of what makes the sentence become decidable.
Gödel's First Theorem sabotages logicism, and the Second sabotages Hilbert's Programme [Smith,P on Gödel]
     Full Idea: Where Gödel's First Theorem sabotages logicist ambitions, the Second Theorem sabotages Hilbert's Programme.
     From: comment on Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 36
     A reaction: Neo-logicism (Crispin Wright etc.) has a strategy for evading the First Theorem.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
There can be no single consistent theory from which all mathematical truths can be derived [Gödel, by George/Velleman]
     Full Idea: Gödel's far-reaching work on the nature of logic and formal systems reveals that there can be no single consistent theory from which all mathematical truths can be derived.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.8
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers are ratios of quantities, such as lengths or masses [Frege]
     Full Idea: If 'number' is the referent of a numerical symbol, a real number is the same as a ratio of quantities. ...A length can have to another length the same ratio as a mass to another mass.
     From: Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893], III.1.73), quoted by Michael Dummett - Frege philosophy of mathematics 21 'Frege's'
     A reaction: This is part of a critique of Cantor and the Cauchy series approach. Interesting that Frege, who is in the platonist camp, is keen to connect the real numbers with natural phenomena. He is always keen to keep touch with the application of mathematics.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
We can't prove everything, but we can spell out the unproved, so that foundations are clear [Frege]
     Full Idea: It cannot be demanded that everything be proved, because that is impossible; but we can require that all propositions used without proof be expressly declared as such, so that we can see distinctly what the whole structure rests upon.
     From: Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893], p.2), quoted by J. Alberto Coffa - The Semantic Tradition from Kant to Carnap 7 'What'
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
First Incompleteness: arithmetic must always be incomplete [Gödel, by Smith,P]
     Full Idea: First Incompleteness Theorem: any properly axiomatised and consistent theory of basic arithmetic must remain incomplete, whatever our efforts to complete it by throwing further axioms into the mix.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 1.2
     A reaction: This is because it is always possible to formulate a well-formed sentence which is not provable within the theory.
Gödel showed that arithmetic is either incomplete or inconsistent [Gödel, by Rey]
     Full Idea: Gödel's theorem states that either arithmetic is incomplete, or it is inconsistent.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Georges Rey - Contemporary Philosophy of Mind 8.7
Arithmetical truth cannot be fully and formally derived from axioms and inference rules [Gödel, by Nagel/Newman]
     Full Idea: The vast continent of arithmetical truth cannot be brought into systematic order by laying down a fixed set of axioms and rules of inference from which every true mathematical statement can be formally derived. For some this was a shocking revelation.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by E Nagel / JR Newman - Gödel's Proof VII.C
     A reaction: Good news for philosophy, I'd say. The truth cannot be worked out by mechanical procedures, so it needs the subtle and intuitive intelligence of your proper philosopher (Parmenides is the role model) to actually understand reality.
Gödel's Second says that semantic consequence outruns provability [Gödel, by Hanna]
     Full Idea: Gödel's Second Incompleteness Theorem says that true unprovable sentences are clearly semantic consequences of the axioms in the sense that they are necessarily true if the axioms are true. So semantic consequence outruns provability.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Robert Hanna - Rationality and Logic 5.3
First Incompleteness: a decent consistent system is syntactically incomplete [Gödel, by George/Velleman]
     Full Idea: First Incompleteness Theorem: If S is a sufficiently powerful formal system, then if S is consistent then S is syntactically incomplete.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: Gödel found a single sentence, effectively saying 'I am unprovable in S', which is neither provable nor refutable in S.
Second Incompleteness: a decent consistent system can't prove its own consistency [Gödel, by George/Velleman]
     Full Idea: Second Incompleteness Theorem: If S is a sufficiently powerful formal system, then if S is consistent then S cannot prove its own consistency
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: This seems much less surprising than the First Theorem (though it derives from it). It was always kind of obvious that you couldn't use reason to prove that reason works (see, for example, the Cartesian Circle).
There is a sentence which a theory can show is true iff it is unprovable [Gödel, by Smith,P]
     Full Idea: The original Gödel construction gives us a sentence that a theory shows is true if and only if it satisfies the condition of being unprovable-in-that-theory.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 20.5
'This system can't prove this statement' makes it unprovable either way [Gödel, by Clegg]
     Full Idea: An approximation of Gödel's Theorem imagines a statement 'This system of mathematics can't prove this statement true'. If the system proves the statement, then it can't prove it. If the statement can't prove the statement, clearly it still can't prove it.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.15
     A reaction: Gödel's contribution to this simple idea seems to be a demonstration that formal arithmetic is capable of expressing such a statement.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
Frege defined number in terms of extensions of concepts, but needed Basic Law V to explain extensions [Frege, by Hale/Wright]
     Full Idea: Frege opts for his famous definition of numbers in terms of extensions of the concept 'equal to the concept F', but he then (in 'Grundgesetze') needs a theory of extensions or classes, which he provided by means of Basic Law V.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893]) by B Hale / C Wright - Intro to 'The Reason's Proper Study' §1
Frege ignored Cantor's warning that a cardinal set is not just a concept-extension [Tait on Frege]
     Full Idea: Cantor pointed out explicitly to Frege that it is a mistake to take the notion of a set (i.e. of that which has a cardinal number) to simply mean the extension of a concept. ...Frege's later assumption of this was an act of recklessness.
     From: comment on Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893]) by William W. Tait - Frege versus Cantor and Dedekind III
     A reaction: ['recklessness' is on p.61] Tait has no sympathy with the image of Frege as an intellectual martyr. Frege had insufficient respect for a great genius. Cantor, crucially, understood infinity much better than Frege.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
My Basic Law V is a law of pure logic [Frege]
     Full Idea: I hold that my Basic Law V is a law of pure logic.
     From: Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893], p.4), quoted by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: This is, of course, the notorious law which fell foul of Russell's Paradox. It is said to be pure logic, even though it refers to things that are F and things that are G.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Realists are happy with impredicative definitions, which describe entities in terms of other existing entities [Gödel, by Shapiro]
     Full Idea: Gödel defended impredicative definitions on grounds of ontological realism. From that perspective, an impredicative definition is a description of an existing entity with reference to other existing entities.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Stewart Shapiro - Thinking About Mathematics 5.3
     A reaction: This is why constructivists must be absolutely precise about definition, where realists only have to do their best. Compare building a car with painting a landscape.
17. Mind and Body / C. Functionalism / 2. Machine Functionalism
Basic logic can be done by syntax, with no semantics [Gödel, by Rey]
     Full Idea: Gödel in his completeness theorem for first-order logic showed that a certain set of syntactically specifiable rules was adequate to capture all first-order valid arguments. No semantics (e.g. reference, truth, validity) was necessary.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Georges Rey - Contemporary Philosophy of Mind 8.2
     A reaction: This implies that a logic machine is possible, but we shouldn't raise our hopes for proper rationality. Validity can be shown for purely algebraic arguments, but rationality requires truth as well as validity, and that needs propositions and semantics.
18. Thought / D. Concepts / 3. Ontology of Concepts / c. Fregean concepts
A concept is a function mapping objects onto truth-values, if they fall under the concept [Frege, by Dummett]
     Full Idea: In later Frege, a concept could be taken as a particular case of a function, mapping every object on to one of the truth-values (T or F), according as to whether, as we should ordinarily say, that object fell under the concept or not.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893]) by Michael Dummett - The Philosophy of Mathematics 3.5
     A reaction: As so often in these attempts at explanation, this sounds circular. You can't decide whether an object truly falls under a concept, if you haven't already got the concept. His troubles all arise (I say) because he scorns abstractionist accounts.
Frege took the study of concepts to be part of logic [Frege, by Shapiro]
     Full Idea: Frege took the study of concepts and their extensions to be within logic.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893]) by Stewart Shapiro - Foundations without Foundationalism 7.1
     A reaction: This is part of the plan to make logic a universal language (see Idea 13664). I disagree with this, and with the general logicist view of the position of logic. The logical approach thins concepts out. See Deleuze/Guattari's horror at this.
23. Ethics / C. Virtue Theory / 3. Virtues / a. Virtues
The six perfections are giving, morality, patience, vigour, meditation, and wisdom [Nagarjuna]
     Full Idea: The six perfections are of giving, morality, patience, vigour, meditation, and wisdom.
     From: Nagarjuna (Mahaprajnaparamitashastra [c.120], 88)
     A reaction: What is 'morality', if giving is not part of it? I like patience and vigour being two of the virtues, which immediately implies an Aristotelian mean (which is always what is 'appropriate').