Combining Texts

All the ideas for 'Mahaprajnaparamitashastra', 'Vagueness: a global approach' and 'Introduction to the Philosophy of Mathematics'

unexpand these ideas     |    start again     |     specify just one area for these texts


32 ideas

4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Showing a disproof is impossible is not a proof, so don't eliminate double negation [Colyvan]
     Full Idea: In intuitionist logic double negation elimination fails. After all, proving that there is no proof that there can't be a proof of S is not the same thing as having a proof of S.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: I do like people like Colyvan who explain things clearly. All of this difficult stuff is understandable, if only someone makes the effort to explain it properly.
Rejecting double negation elimination undermines reductio proofs [Colyvan]
     Full Idea: The intuitionist rejection of double negation elimination undermines the important reductio ad absurdum proof in classical mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Indeterminacy is in conflict with classical logic [Fine,K]
     Full Idea: I now believe that the existence of indeterminacy is in conflict with classical logic.
     From: Kit Fine (Vagueness: a global approach [2020], 3)
     A reaction: I think that prior to this Fine had defended classical logic. Presumably the difficulty is over Bivalence. Nietzsche spotted this problem, despite not being a logician. Logic has to simplify the world. Hence philosophy is quite different from logic.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Excluded middle says P or not-P; bivalence says P is either true or false [Colyvan]
     Full Idea: The law of excluded middle (for every proposition P, either P or not-P) must be carefully distinguished from its semantic counterpart bivalence, that every proposition is either true or false.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: So excluded middle makes no reference to the actual truth or falsity of P. It merely says P excludes not-P, and vice versa.
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Classical semantics has referents for names, extensions for predicates, and T or F for sentences [Fine,K]
     Full Idea: A precise language is often assigned a classical semantics, in which the semantic value of a name is its referent, the semantic value of a predicate is its extension (the objects of which it is true), and the value of a sentence is True or False.
     From: Kit Fine (Vagueness: a global approach [2020], 1)
     A reaction: Helpful to have this clear statement of how predicates are treated. This extensionalism in logic causes trouble when it creeps into philosophy, and people say that 'red' just means all the red things. No it doesn't.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Löwenheim proved his result for a first-order sentence, and Skolem generalised it [Colyvan]
     Full Idea: Löwenheim proved that if a first-order sentence has a model at all, it has a countable model. ...Skolem generalised this result to systems of first-order sentences.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 2.1.2)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Axioms are 'categorical' if all of their models are isomorphic [Colyvan]
     Full Idea: A set of axioms is said to be 'categorical' if all models of the axioms in question are isomorphic.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 2.1.2)
     A reaction: The best example is the Peano Axioms, which are 'true up to isomorphism'. Set theory axioms are only 'quasi-isomorphic'.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Ordinal numbers represent order relations [Colyvan]
     Full Idea: Ordinal numbers represent order relations.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.2.3 n17)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Intuitionists only accept a few safe infinities [Colyvan]
     Full Idea: For intuitionists, all but the smallest, most well-behaved infinities are rejected.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: The intuitionist idea is to only accept what can be clearly constructed or proved.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
Infinitesimals were sometimes zero, and sometimes close to zero [Colyvan]
     Full Idea: The problem with infinitesimals is that in some places they behaved like real numbers close to zero but in other places they behaved like zero.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 7.1.2)
     A reaction: Colyvan gives an example, of differentiating a polynomial.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Reducing real numbers to rationals suggested arithmetic as the foundation of maths [Colyvan]
     Full Idea: Given Dedekind's reduction of real numbers to sequences of rational numbers, and other known reductions in mathematics, it was tempting to see basic arithmetic as the foundation of mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.1)
     A reaction: The reduction is the famous Dedekind 'cut'. Nowadays theorists seem to be more abstract (Category Theory, for example) instead of reductionist.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Transfinite induction moves from all cases, up to the limit ordinal [Colyvan]
     Full Idea: Transfinite inductions are inductive proofs that include an extra step to show that if the statement holds for all cases less than some limit ordinal, the statement also holds for the limit ordinal.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1 n11)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Most mathematical proofs are using set theory, but without saying so [Colyvan]
     Full Idea: Most mathematical proofs, outside of set theory, do not explicitly state the set theory being employed.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 7.1.1)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism say only 'up to isomorphism' matters because that is all there is to it [Colyvan]
     Full Idea: Structuralism is able to explain why mathematicians are typically only interested in describing the objects they study up to isomorphism - for that is all there is to describe.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 3.1.2)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
If 'in re' structures relies on the world, does the world contain rich enough structures? [Colyvan]
     Full Idea: In re structuralism does not posit anything other than the kinds of structures that are in fact found in the world. ...The problem is that the world may not provide rich enough structures for the mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 3.1.2)
     A reaction: You can perceive a repeating pattern in the world, without any interest in how far the repetitions extend.
7. Existence / D. Theories of Reality / 10. Vagueness / a. Problem of vagueness
Local indeterminacy concerns a single object, and global indeterminacy covers a range [Fine,K]
     Full Idea: Vagueness concerns 'local' indeterminacy, such as whether one man in the lineup is bald, and 'global' indeterminacy, applying to a range of cases, as when it is indeterminate how 'bald' applies to the lineup. But how do these relate?
     From: Kit Fine (Vagueness: a global approach [2020], 1)
     A reaction: This puts the focus either on objects or on predicates which are vague.
Conjoining two indefinites by related sentences seems to produce a contradiction [Fine,K]
     Full Idea: If 'P is red' and 'P is orange' are indefinite, then 'P is red and P is orange' seems false, because red and orange are exclusive. But if two conjoined indefinite sentences are false, that makes 'P is red and P is red' false, when it should be indefinite.
     From: Kit Fine (Vagueness: a global approach [2020], 1)
     A reaction: [compressed] This is the problem of 'penumbral connection', where two indefinite values are still logically related, by excluding one another. Presumably 'P is red and P is of indefinite shape' can be true? Doubtful about this argument.
Standardly vagueness involves borderline cases, and a higher standpoint from which they can be seen [Fine,K]
     Full Idea: Standard notions of vagueness all accept borderline cases, and presuppose a higher standpoint from which a judgement of being borderline F, rather than simply being F or being not F, can be made.
     From: Kit Fine (Vagueness: a global approach [2020], 3)
     A reaction: He says that the concept of borderline cases is an impediment to understanding vagueness. Proposing a third group when you are struggling to separate two other groups doesn't seem helpful, come to think of it. Limbo cases.
7. Existence / D. Theories of Reality / 10. Vagueness / c. Vagueness as ignorance
Identifying vagueness with ignorance is the common mistake of confusing symptoms with cause [Fine,K]
     Full Idea: We can see Epistemicism [vagueness as ignorance] as a common and misguided tendency to identify a cause with its symptoms. We are unsure how to characterise vagueness, and identify it with the resulting ignorance, instead of explaining it.
     From: Kit Fine (Vagueness: a global approach [2020], 1)
     A reaction: Love it. This echoes my repeated plea in these reactions to stop identifying features of reality with the functions which embody them or the patterns they create. We need to explain them, and must dig deeper.
7. Existence / D. Theories of Reality / 10. Vagueness / f. Supervaluation for vagueness
Supervaluation can give no answer to 'who is the last bald man' [Fine,K]
     Full Idea: Under supervaluation there should always be someone who is the last bald man in the sequence, but there is always an acceptable way to make some other man the last bald man.
     From: Kit Fine (Vagueness: a global approach [2020], 1)
     A reaction: Fine seems to take this as a conclusive refutation of the supervaluation approach. Fine says (p.41) that supervaluation says there is a precisification for every instance.
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
We do not have an intelligible concept of a borderline case [Fine,K]
     Full Idea: We simply have no intelligible notion of local indeterminacy or of a borderline case.
     From: Kit Fine (Vagueness: a global approach [2020], 2)
     A reaction: He mentions cases which are near a borderline, and cases which are hard to decide, but denies that these are intrinsically borderline. If there are borderline cases between red and orange, what are the outer boundaries of the border?
14. Science / C. Induction / 6. Bayes's Theorem
Probability supports Bayesianism better as degrees of belief than as ratios of frequencies [Colyvan]
     Full Idea: Those who see probabilities as ratios of frequencies can't use Bayes's Theorem if there is no objective prior probability. Those who accept prior probabilities tend to opt for a subjectivist account, where probabilities are degrees of belief.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 9.1.8)
     A reaction: [compressed]
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
Mathematics can reveal structural similarities in diverse systems [Colyvan]
     Full Idea: Mathematics can demonstrate structural similarities between systems (e.g. missing population periods and the gaps in the rings of Saturn).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 6.3.2)
     A reaction: [Colyvan expounds the details of his two examples] It is these sorts of results that get people enthusiastic about the mathematics embedded in nature. A misunderstanding, I think.
14. Science / D. Explanation / 2. Types of Explanation / f. Necessity in explanations
Mathematics can show why some surprising events have to occur [Colyvan]
     Full Idea: Mathematics can show that under a broad range of conditions, something initially surprising must occur (e.g. the hexagonal structure of honeycomb).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 6.3.2)
14. Science / D. Explanation / 2. Types of Explanation / m. Explanation by proof
Reductio proofs do not seem to be very explanatory [Colyvan]
     Full Idea: One kind of proof that is thought to be unexplanatory is the 'reductio' proof.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
     A reaction: Presumably you generate a contradiction, but are given no indication of why the contradiction has arisen? Tracking back might reveal the source of the problem? Colyvan thinks reductio can be explanatory.
If inductive proofs hold because of the structure of natural numbers, they may explain theorems [Colyvan]
     Full Idea: It might be argued that any proof by induction is revealing the explanation of the theorem, namely, that it holds by virtue of the structure of the natural numbers.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
     A reaction: This is because induction characterises the natural numbers, in the Peano Axioms.
Can a proof that no one understands (of the four-colour theorem) really be a proof? [Colyvan]
     Full Idea: The proof of the four-colour theorem raises questions about whether a 'proof' that no one understands is a proof.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 9.1.6)
     A reaction: The point is that the theorem (that you can colour countries on a map with just four colours) was proved with the help of a computer.
Proof by cases (by 'exhaustion') is said to be unexplanatory [Colyvan]
     Full Idea: Another style of proof often cited as unexplanatory are brute-force methods such as proof by cases (or proof by exhaustion).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
Mathematical generalisation is by extending a system, or by abstracting away from it [Colyvan]
     Full Idea: One type of generalisation in mathematics extends a system to go beyond what is was originally set up for; another kind involves abstracting away from some details in order to capture similarities between different systems.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.2)
16. Persons / D. Continuity of the Self / 2. Mental Continuity / b. Self as mental continuity
It seems absurd that there is no identity of any kind between two objects which involve survival [Fine,K]
     Full Idea: Pace Parfit and others, it boggles the mind that survival could be independent of any relation of identity between the currently existing object and the objects that subsequently exist.
     From: Kit Fine (Vagueness: a global approach [2020], 3)
     A reaction: Yes. If the self or mind just consists of a diachronic trail of memories such that the two ends of the trail have no connection at all, that isn't the kind of survival that any of us want. I want to live my life, not a life.
23. Ethics / C. Virtue Theory / 3. Virtues / a. Virtues
The six perfections are giving, morality, patience, vigour, meditation, and wisdom [Nagarjuna]
     Full Idea: The six perfections are of giving, morality, patience, vigour, meditation, and wisdom.
     From: Nagarjuna (Mahaprajnaparamitashastra [c.120], 88)
     A reaction: What is 'morality', if giving is not part of it? I like patience and vigour being two of the virtues, which immediately implies an Aristotelian mean (which is always what is 'appropriate').
26. Natural Theory / D. Laws of Nature / 4. Regularities / a. Regularity theory
We identify laws with regularities because we mistakenly identify causes with their symptoms [Fine,K]
     Full Idea: There is a common tendency to identify a cause with its symptoms. Hence we are not sure how to characterise a law, and so we identify it with the regularities to which it gives rise.
     From: Kit Fine (Vagueness: a global approach [2020], 1)
     A reaction: A lovely clear identification of my pet hate, which is superficial accounts of things, which claim to be the last word, but actually explain nothing.