Combining Texts

All the ideas for 'Mahaprajnaparamitashastra', 'What are Sets and What are they For?' and 'Prior Analytics'

unexpand these ideas     |    start again     |     specify just one area for these texts


26 ideas

4. Formal Logic / A. Syllogistic Logic / 1. Aristotelian Logic
Aristotle was the first to use schematic letters in logic [Aristotle, by Potter]
     Full Idea: It was Aristotle who initiated the use of the letter of the (Greek) alphabet 'schematically', to stand for an unspecified piece of language of some appropriate grammatical type.
     From: report of Aristotle (Prior Analytics [c.328 BCE]) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 02 'Aris'
     A reaction: Did he invent it from scratch, or borrow it from the mathematicians? Euclid labels diagrams with letters.
Aristotelian syllogisms are three-part, subject-predicate, existentially committed, with laws of thought [Aristotle, by Hanna]
     Full Idea: Aristotle's logic is based on the triadic syllogism, the distinction between subject and one-place predicates, that universal claims have existential commitment, and bivalence, excluded middle and noncontradiction.
     From: report of Aristotle (Prior Analytics [c.328 BCE]) by Robert Hanna - Rationality and Logic 2.2
Aristotelian sentences are made up by one of four 'formative' connectors [Aristotle, by Engelbretsen]
     Full Idea: For Aristotle there are four formatives for sentences: 'belongs to some', 'belongs to every', 'belongs to no', and 'does not belong to every'. These are 'copulae'. Aristotle would have written 'wise belongs to some man'.
     From: report of Aristotle (Prior Analytics [c.328 BCE]) by George Engelbretsen - Trees, Terms and Truth 3
     A reaction: A rather set-theoretic reading. This invites a Quinean scepticism about whether wisdom is some entity which can 'belong' to a person. It makes trope theory sound attractive, offering a unique wisdom that is integrated into that particular person.
Aristotelian identified 256 possible syllogisms, saying that 19 are valid [Aristotle, by Devlin]
     Full Idea: Aristotle identified four 'figures' of argument, based on combinations of Subject (S) and Predicate (P) and Middle term (M). The addition of 'all' and 'some', and 'has' and 'has not' got the property, resulted in 256 possible syllogisms, 19 of them valid.
     From: report of Aristotle (Prior Analytics [c.328 BCE]) by Keith Devlin - Goodbye Descartes Ch.2
     A reaction: [Compressed version of Devlin] What Aristotle did was astonishing, and must be one of the key ideas of western civilization, even though a lot of his assumptions have been revised or rejected.
Aristotle replaced Plato's noun-verb form with unions of pairs of terms by one of four 'copulae' [Aristotle, by Engelbretsen/Sayward]
     Full Idea: Aristotle replaced the Platonic noun-verb account of logical syntax with a 'copular' account. A sentence is a pair of terms bound together logically (not necessarily grammatically) by one of four 'logical copulae' (every, none, some, not some).
     From: report of Aristotle (Prior Analytics [c.328 BCE]) by Engelbretsen,G/Sayward,C - Philosophical Logic: Intro to Advanced Topics 8
     A reaction: So the four copulas are are-all, are-never, are-sometimes, and are-sometime-not. Consider 'men' and 'mortal'. Alternatively, Idea 18909.
Aristotle listed nineteen valid syllogisms (though a few of them were wrong) [Aristotle, by Devlin]
     Full Idea: Aristotle listed a total of nineteen syllogisms involved in logical reasoning, though some of the ones on his list were subsequently shown to be invalid.
     From: report of Aristotle (Prior Analytics [c.328 BCE], Ch.1) by Keith Devlin - Goodbye Descartes
     A reaction: It is quite upsetting to think that the founding genius got some of it wrong, but that just shows how subtle and complex the analysis of rational thought can be.
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
Aristotle's said some Fs are G or some Fs are not G, forgetting that there might be no Fs [Bostock on Aristotle]
     Full Idea: Aristotle's system accepted as correct some laws which nowadays we reject, for example |= (Some Fs are G) or (some Fs are not G). He failed to take into account the possibility of there being no Fs at all.
     From: comment on Aristotle (Prior Analytics [c.328 BCE]) by David Bostock - Intermediate Logic 8.4
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
There are three different deductions for actual terms, necessary terms and possible terms [Aristotle]
     Full Idea: Since to belong, to belong of necessity, and to be possible to belong are different, ..there will be different deductions for each; one deduction will be from necessary terms, one from terms which belong, and one from possible terms.
     From: Aristotle (Prior Analytics [c.328 BCE], 29b29-35)
     A reaction: Fitting and Mendelsohn cite this as the earliest thoughts on modal logic. but Kneale and Kneale say that Aristotle got into a muddle, and so was unable to create a workable system.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
The empty set is usually derived from Separation, but it also seems to need Infinity [Oliver/Smiley]
     Full Idea: The empty set is usually derived via Zermelo's axiom of separation. But the axiom of separation is conditional: it requires the existence of a set in order to generate others as subsets of it. The original set has to come from the axiom of infinity.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 1.2)
     A reaction: They charge that this leads to circularity, as Infinity depends on the empty set.
The empty set is something, not nothing! [Oliver/Smiley]
     Full Idea: Some authors need to be told loud and clear: if there is an empty set, it is something, not nothing.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 1.2)
     A reaction: I'm inclined to think of a null set as a pair of brackets, so maybe that puts it into a metalanguage.
We don't need the empty set to express non-existence, as there are other ways to do that [Oliver/Smiley]
     Full Idea: The empty set is said to be useful to express non-existence, but saying 'there are no Us', or ¬∃xUx are no less concise, and certainly less roundabout.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 1.2)
Maybe we can treat the empty set symbol as just meaning an empty term [Oliver/Smiley]
     Full Idea: Suppose we introduce Ω not as a term standing for a supposed empty set, but as a paradigm of an empty term, not standing for anything.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 1.2)
     A reaction: This proposal, which they go on to explore, seems to mean that Ω (i.e. the traditional empty set symbol) is no longer part of set theory but is part of semantics.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
The unit set may be needed to express intersections that leave a single member [Oliver/Smiley]
     Full Idea: Thomason says with no unit sets we couldn't call {1,2}∩{2,3} a set - but so what? Why shouldn't the intersection be the number 2? However, we then have to distinguish three different cases of intersection (common subset or member, or disjoint).
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 2.2)
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
Deduction is when we suppose one thing, and another necessarily follows [Aristotle]
     Full Idea: A deduction is a discourse in which, certain things having been supposed, something different from the things supposed results of necessity because these things are so.
     From: Aristotle (Prior Analytics [c.328 BCE], 24b18)
     A reaction: Notice that it is modal ('suppose', rather than 'know'), that necessity is involved, which is presumably metaphysical necessity, and that there are assumptions about what would be true, and not just what follows from what.
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Aristotle places terms at opposite ends, joined by a quantified copula [Aristotle, by Sommers]
     Full Idea: Aristotle often preferred to formulate predications by placing the terms at opposite ends of the sentence and joining them by predicating expressions like 'belongs-to-some' or 'belongs-to-every'.
     From: report of Aristotle (Prior Analytics [c.328 BCE]) by Fred Sommers - Intellectual Autobiography 'Conceptions'
     A reaction: This is Sommers's picture of Aristotle, which led Sommers to develop his modern Term Logic.
5. Theory of Logic / E. Structures of Logic / 7. Predicates in Logic
Aristotle's logic is based on the subject/predicate distinction, which leads him to substances and properties [Aristotle, by Benardete,JA]
     Full Idea: Basic to Aristotle's logic is the grammatical distinction between subject and predicate, which he glosses in terms of the contrast between a substance and its properties.
     From: report of Aristotle (Prior Analytics [c.328 BCE]) by José A. Benardete - Metaphysics: the logical approach Intro
     A reaction: The introduction of quantifiers and 'logical form' can't disguise the fact that we still talk about (and with) objects and predicates, because no one can think of any other way to talk.
5. Theory of Logic / G. Quantification / 1. Quantification
Affirming/denying sentences are universal, particular, or indeterminate [Aristotle]
     Full Idea: Affirming/denying sentences are universal, particular, or indeterminate. Belonging 'to every/to none' is universal; belonging 'to some/not to some/not to every' is particular; belonging or not belonging (without universal/particular) is indeterminate.
     From: Aristotle (Prior Analytics [c.328 BCE], 24a16)
5. Theory of Logic / G. Quantification / 3. Objectual Quantification
Aristotelian logic has two quantifiers of the subject ('all' and 'some') [Aristotle, by Devlin]
     Full Idea: Aristotelian logic has two quantifiers of the subject ('all' and 'some'), and two ways to combine the subject with the predicate ('have', and 'have not'), giving four propositions: all-s-have-p, all-s-have-not-p, some-s-have-p, and some-s-have-not-p.
     From: report of Aristotle (Prior Analytics [c.328 BCE]) by Keith Devlin - Goodbye Descartes Ch.2
     A reaction: Frege seems to have switched from 'some' to 'at-least-one'. Since then other quantifiers have been proposed. See, for example, Ideas 7806 and 6068.
5. Theory of Logic / G. Quantification / 6. Plural Quantification
If you only refer to objects one at a time, you need sets in order to refer to a plurality [Oliver/Smiley]
     Full Idea: A 'singularist', who refers to objects one at a time, must resort to the language of sets in order to replace plural reference to members ('Henry VIII's wives') by singular reference to a set ('the set of Henry VIII's wives').
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], Intro)
     A reaction: A simple and illuminating point about the motivation for plural reference. Null sets and singletons give me the creeps, so I would personally prefer to avoid set theory when dealing with ontology.
We can use plural language to refer to the set theory domain, to avoid calling it a 'set' [Oliver/Smiley]
     Full Idea: Plurals earn their keep in set theory, to answer Skolem's remark that 'in order to treat of 'sets', we must begin with 'domains' that are constituted in a certain way'. We can speak in the plural of 'the objects', not a 'domain' of objects.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], Intro)
     A reaction: [Skolem 1922:291 in van Heijenoort] Zermelo has said that the domain cannot be a set, because every set belongs to it.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Logical truths are true no matter what exists - but predicate calculus insists that something exists [Oliver/Smiley]
     Full Idea: Logical truths should be true no matter what exists, so true even if nothing exists. The classical predicate calculus, however, makes it logically true that something exists.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 5.1)
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
If mathematics purely concerned mathematical objects, there would be no applied mathematics [Oliver/Smiley]
     Full Idea: If mathematics was purely concerned with mathematical objects, there would be no room for applied mathematics.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 5.1)
     A reaction: Love it! Of course, they are using 'objects' in the rather Fregean sense of genuine abstract entities. I don't see why fictionalism shouldn't allow maths to be wholly 'pure', although we have invented fictions which actually have application.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Sets might either represent the numbers, or be the numbers, or replace the numbers [Oliver/Smiley]
     Full Idea: Identifying numbers with sets may mean one of three quite different things: 1) the sets represent the numbers, or ii) they are the numbers, or iii) they replace the numbers.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 5.2)
     A reaction: Option one sounds the most plausible to me. I will take numbers to be patterns embedded in nature, and sets are one way of presenting them in shorthand form, in order to bring out what is repeated.
10. Modality / A. Necessity / 4. De re / De dicto modality
A deduction is necessary if the major (but not the minor) premise is also necessary [Aristotle]
     Full Idea: It sometimes results that the deduction becomes necessary when only one of the premises is necessary (not whatever premise it might be, however, but only the premise in relation to the major extreme [premise]).
     From: Aristotle (Prior Analytics [c.328 BCE], 30a15)
     A reaction: The qualification is brackets is said by Plantinga (1969) to be a recognition of the de re/ de dicto distinction (later taken up by Aquinas). Plantinga gives two examples to illustrate his reading.
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
Linguistic terms form a hierarchy, with higher terms predicable of increasing numbers of things [Aristotle, by Engelbretsen]
     Full Idea: According to Aristotle, the terms of a language form a finite hierarchy, where the higher terms are predicable of more things than are lower terms.
     From: report of Aristotle (Prior Analytics [c.328 BCE]) by George Engelbretsen - Trees, Terms and Truth 3
     A reaction: I would be a bit cautious about placing something precisely in a hierarchy according to how many things it can be predicated of. It is a start, though, in trying to give a decent account of generality, which is a major concept in philosophy.
23. Ethics / C. Virtue Theory / 3. Virtues / a. Virtues
The six perfections are giving, morality, patience, vigour, meditation, and wisdom [Nagarjuna]
     Full Idea: The six perfections are of giving, morality, patience, vigour, meditation, and wisdom.
     From: Nagarjuna (Mahaprajnaparamitashastra [c.120], 88)
     A reaction: What is 'morality', if giving is not part of it? I like patience and vigour being two of the virtues, which immediately implies an Aristotelian mean (which is always what is 'appropriate').