Combining Texts

All the ideas for 'Mahaprajnaparamitashastra', 'Model Theory' and 'Sets and Numbers'

unexpand these ideas     |    start again     |     specify just one area for these texts


17 ideas

2. Reason / D. Definition / 7. Contextual Definition
The idea that groups of concepts could be 'implicitly defined' was abandoned [Hodges,W]
     Full Idea: Late nineteenth century mathematicians said that, although plus, minus and 0 could not be precisely defined, they could be partially 'implicitly defined' as a group. This nonsense was rejected by Frege and others, as expressed in Russell 1903.
     From: Wilfrid Hodges (Model Theory [2005], 2)
     A reaction: [compressed] This is helpful in understanding what is going on in Frege's 'Grundlagen'. I won't challenge Hodges's claim that such definitions are nonsense, but there is a case for understanding groups of concepts together.
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
The master science is physical objects divided into sets [Maddy]
     Full Idea: The master science can be thought of as the theory of sets with the entire range of physical objects as ur-elements.
     From: Penelope Maddy (Sets and Numbers [1981], II)
     A reaction: This sounds like Quine's view, since we have to add sets to our naturalistic ontology of objects. It seems to involve unrestricted mereology to create normal objects.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
Since first-order languages are complete, |= and |- have the same meaning [Hodges,W]
     Full Idea: In first-order languages the completeness theorem tells us that T |= φ holds if and only if there is a proof of φ from T (T |- φ). Since the two symbols express the same relationship, theorist often just use |- (but only for first-order!).
     From: Wilfrid Hodges (Model Theory [2005], 3)
     A reaction: [actually no spaces in the symbols] If you are going to study this kind of theory of logic, the first thing you need to do is sort out these symbols, which isn't easy!
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
|= in model-theory means 'logical consequence' - it holds in all models [Hodges,W]
     Full Idea: If every structure which is a model of a set of sentences T is also a model of one of its sentences φ, then this is known as the model-theoretic consequence relation, and is written T |= φ. Not to be confused with |= meaning 'satisfies'.
     From: Wilfrid Hodges (Model Theory [2005], 3)
     A reaction: See also Idea 10474, which gives the other meaning of |=, as 'satisfies'. The symbol is ALSO used in propositional logical, to mean 'tautologically implies'! Sort your act out, logicians.
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
|= should be read as 'is a model for' or 'satisfies' [Hodges,W]
     Full Idea: The symbol in 'I |= S' reads that if the interpretation I (about word meaning) happens to make the sentence S state something true, then I 'is a model for' S, or I 'satisfies' S.
     From: Wilfrid Hodges (Model Theory [2005], 1)
     A reaction: Unfortunately this is not the only reading of the symbol |= [no space between | and =!], so care and familiarity are needed, but this is how to read it when dealing with models. See also Idea 10477.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Model theory studies formal or natural language-interpretation using set-theory [Hodges,W]
     Full Idea: Model theory is the study of the interpretation of any language, formal or natural, by means of set-theoretic structures, with Tarski's truth definition as a paradigm.
     From: Wilfrid Hodges (Model Theory [2005], Intro)
     A reaction: My attention is caught by the fact that natural languages are included. Might we say that science is model theory for English? That sounds like Quine's persistent message.
A 'structure' is an interpretation specifying objects and classes of quantification [Hodges,W]
     Full Idea: A 'structure' in model theory is an interpretation which explains what objects some expressions refer to, and what classes some quantifiers range over.
     From: Wilfrid Hodges (Model Theory [2005], 1)
     A reaction: He cites as examples 'first-order structures' used in mathematical model theory, and 'Kripke structures' used in model theory for modal logic. A structure is also called a 'universe'.
Models in model theory are structures, not sets of descriptions [Hodges,W]
     Full Idea: The models in model-theory are structures, but there is also a common use of 'model' to mean a formal theory which describes and explains a phenomenon, or plans to build it.
     From: Wilfrid Hodges (Model Theory [2005], 5)
     A reaction: Hodges is not at all clear here, but the idea seems to be that model-theory offers a set of objects and rules, where the common usage offers a set of descriptions. Model-theory needs homomorphisms to connect models to things,
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
First-order logic can't discriminate between one infinite cardinal and another [Hodges,W]
     Full Idea: First-order logic is hopeless for discriminating between one infinite cardinal and another.
     From: Wilfrid Hodges (Model Theory [2005], 4)
     A reaction: This seems rather significant, since mathematics largely relies on first-order logic for its metatheory. Personally I'm tempted to Ockham's Razor out all these super-infinities, but mathematicians seem to make use of them.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory (unlike the Peano postulates) can explain why multiplication is commutative [Maddy]
     Full Idea: If you wonder why multiplication is commutative, you could prove it from the Peano postulates, but the proof offers little towards an answer. In set theory Cartesian products match 1-1, and n.m dots when turned on its side has m.n dots, which explains it.
     From: Penelope Maddy (Sets and Numbers [1981], II)
     A reaction: 'Turning on its side' sounds more fundamental than formal set theory. I'm a fan of explanation as taking you to the heart of the problem. I suspect the world, rather than set theory, explains the commutativity.
Standardly, numbers are said to be sets, which is neat ontology and epistemology [Maddy]
     Full Idea: The standard account of the relationship between numbers and sets is that numbers simply are certain sets. This has the advantage of ontological economy, and allows numbers to be brought within the epistemology of sets.
     From: Penelope Maddy (Sets and Numbers [1981], III)
     A reaction: Maddy votes for numbers being properties of sets, rather than the sets themselves. See Yourgrau's critique.
Numbers are properties of sets, just as lengths are properties of physical objects [Maddy]
     Full Idea: I propose that ...numbers are properties of sets, analogous, for example, to lengths, which are properties of physical objects.
     From: Penelope Maddy (Sets and Numbers [1981], III)
     A reaction: Are lengths properties of physical objects? A hole in the ground can have a length. A gap can have a length. Pure space seems to contain lengths. A set seems much more abstract than its members.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Sets exist where their elements are, but numbers are more like universals [Maddy]
     Full Idea: A set of things is located where the aggregate of those things is located, ...but a number is simultaneously located at many different places (10 in my hand, and a baseball team) ...so numbers seem more like universals than particulars.
     From: Penelope Maddy (Sets and Numbers [1981], III)
     A reaction: My gut feeling is that Maddy's master idea (of naturalising sets by building them from ur-elements of natural objects) won't work. Sets can work fine in total abstraction from nature.
Number theory doesn't 'reduce' to set theory, because sets have number properties [Maddy]
     Full Idea: I am not suggesting a reduction of number theory to set theory ...There are only sets with number properties; number theory is part of the theory of finite sets.
     From: Penelope Maddy (Sets and Numbers [1981], V)
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
If mathematical objects exist, how can we know them, and which objects are they? [Maddy]
     Full Idea: The popular challenges to platonism in philosophy of mathematics are epistemological (how are we able to interact with these objects in appropriate ways) and ontological (if numbers are sets, which sets are they).
     From: Penelope Maddy (Sets and Numbers [1981], I)
     A reaction: These objections refer to Benacerraf's two famous papers - 1965 for the ontology, and 1973 for the epistemology. Though he relied too much on causal accounts of knowledge in 1973, I'm with him all the way.
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Number words are unusual as adjectives; we don't say 'is five', and numbers always come first [Maddy]
     Full Idea: Number words are not like normal adjectives. For example, number words don't occur in 'is (are)...' contexts except artificially, and they must appear before all other adjectives, and so on.
     From: Penelope Maddy (Sets and Numbers [1981], IV)
     A reaction: [She is citing Benacerraf's arguments]
23. Ethics / C. Virtue Theory / 3. Virtues / a. Virtues
The six perfections are giving, morality, patience, vigour, meditation, and wisdom [Nagarjuna]
     Full Idea: The six perfections are of giving, morality, patience, vigour, meditation, and wisdom.
     From: Nagarjuna (Mahaprajnaparamitashastra [c.120], 88)
     A reaction: What is 'morality', if giving is not part of it? I like patience and vigour being two of the virtues, which immediately implies an Aristotelian mean (which is always what is 'appropriate').