Combining Texts

All the ideas for 'Mahaprajnaparamitashastra', 'The Ways of Paradox' and 'Maths as a Science of Patterns'

unexpand these ideas     |    start again     |     specify just one area for these texts


16 ideas

4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
Axioms are often affirmed simply because they produce results which have been accepted [Resnik]
     Full Idea: Many axioms have been proposed, not on the grounds that they can be directly known, but rather because they produce a desired body of previously recognised results.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], One.5.1)
     A reaction: This is the perennial problem with axioms - whether we start from them, or whether we deduce them after the event. There is nothing wrong with that, just as we might infer the existence of quarks because of their results.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
The set scheme discredited by paradoxes is actually the most natural one [Quine]
     Full Idea: Each proposed revision of set theory is unnatural, because the natural scheme is the unrestricted one that the antinomies discredit.
     From: Willard Quine (The Ways of Paradox [1961], p.16)
     A reaction: You can either takes this free-far-all version of set theory, and gradually restrain it for each specific problem, or start from scratch and build up in safe steps. The latter is (I think) the 'iterated' approach.
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
Russell's antinomy challenged the idea that any condition can produce a set [Quine]
     Full Idea: In the case of Russell's antinomy, the tacit and trusted pattern of reasoning that is found wanting is this: for any condition you can formulate, there is a class whose members are the things meeting the condition.
     From: Willard Quine (The Ways of Paradox [1961], p.11)
     A reaction: This is why Russell's Paradox is so important for set theory, which in turn makes it important for the foundations of mathematics.
5. Theory of Logic / L. Paradox / 3. Antinomies
Antinomies contradict accepted ways of reasoning, and demand revisions [Quine]
     Full Idea: An 'antinomy' produces a self-contradiction by accepted ways of reasoning. It establishes that some tacit and trusted pattern of reasoning must be made explicit and henceforward be avoided or revised.
     From: Willard Quine (The Ways of Paradox [1961], p.05)
     A reaction: Quine treats antinomies as of much greater importance than mere paradoxes. It is often possible to give simple explanations of paradoxes, but antinomies go to the root of our belief system. This was presumably Kant's intended meaning.
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / a. Achilles paradox
Whenever the pursuer reaches the spot where the pursuer has been, the pursued has moved on [Quine]
     Full Idea: The Achilles argument is that (if the front runner keeps running) each time the pursuer reaches a spot where the pursuer has been, the pursued has moved a bit beyond.
     From: Willard Quine (The Ways of Paradox [1961], p.03)
     A reaction: Quine is always wonderfully lucid, and this is the clearest simple statement of the paradox.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / d. Russell's paradox
A barber shaves only those who do not shave themselves. So does he shave himself? [Quine]
     Full Idea: In a certain village there is a barber, who shaves all and only those men in the village who do not shave themselves. So does the barber shave himself? The barber shaves himself if and only if he does not shave himself.
     From: Willard Quine (The Ways of Paradox [1961], p.02)
     A reaction: [Russell himself quoted this version of his paradox, from an unnamed source] Quine treats his as trivial because it only concerns barbers, but the full Russell paradox is a major 'antinomy', because it concerns sets.
Membership conditions which involve membership and non-membership are paradoxical [Quine]
     Full Idea: With Russell's antinomy, ...each tie the trouble comes of taking a membership condition that itself talks in turn of membership and non-membership.
     From: Willard Quine (The Ways of Paradox [1961], p.13)
     A reaction: Hence various stipulations to rule out vicious circles or referring to sets of the 'wrong type' are invoked to cure the problem. The big question is how strong to make the restrictions.
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
If we write it as '"this sentence is false" is false', there is no paradox [Quine]
     Full Idea: If we supplant the sentence 'this sentence is false' with one saying what it refers to, we get '"this sentence is false" is false'. But then the whole outside sentence attributes falsity no longer to itself but to something else, so there is no paradox.
     From: Willard Quine (The Ways of Paradox [1961], p.07)
     A reaction: Quine is pointing us towards type theory and meta-languages to solve the problem. We now have the Revenge Liar, and the problem has not been fully settled.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematical realism says that maths exists, is largely true, and is independent of proofs [Resnik]
     Full Idea: Mathematical realism is the doctrine that mathematical objects exist, that much contemporary mathematics is true, and that the existence and truth in question is independent of our constructions, beliefs and proofs.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], Three.12.9)
     A reaction: As thus defined, I would call myself a mathematical realist, but everyone must hesitate a little at the word 'exist' and ask, how does it exist? What is it 'made of'? To say that it exists in the way that patterns exist strikes me as very helpful.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Mathematical constants and quantifiers only exist as locations within structures or patterns [Resnik]
     Full Idea: In maths the primary subject-matter is not mathematical objects but structures in which they are arranged; our constants and quantifiers denote atoms, structureless points, or positions in structures; they have no identity outside a structure or pattern.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], Three.10.1)
     A reaction: This seems to me a very promising idea for the understanding of mathematics. All mathematicians acknowledge that the recognition of patterns is basic to the subject. Even animals recognise patterns. It is natural to invent a language of patterns.
Sets are positions in patterns [Resnik]
     Full Idea: On my view, sets are positions in certain patterns.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], Three.10.5)
     A reaction: I have always found the ontology of a 'set' puzzling, because they seem to depend on prior reasons why something is a member of a given set, which cannot always be random. It is hard to explain sets without mentioning properties.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Structuralism must explain why a triangle is a whole, and not a random set of points [Resnik]
     Full Idea: An objection is that structuralism fails to explain why certain mathematical patterns are unified wholes while others are not; for instance, some think that an ontological account of mathematics must explain why a triangle is not a 'random' set of points.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], Three.10.4)
     A reaction: This is an indication that we are not just saying that we recognise patterns in nature, but that we also 'see' various underlying characteristics of the patterns. The obvious suggestion is that we see meta-patterns.
There are too many mathematical objects for them all to be mental or physical [Resnik]
     Full Idea: If we take mathematics at its word, there are too many mathematical objects for it to be plausible that they are all mental or physical objects.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], One.1)
     A reaction: No one, of course, has ever claimed that they are, but this is a good starting point for assessing the ontology of mathematics. We are going to need 'rules', which can deduce the multitudinous mathematical objects from a small ontology.
Maths is pattern recognition and representation, and its truth and proofs are based on these [Resnik]
     Full Idea: I argue that mathematical knowledge has its roots in pattern recognition and representation, and that manipulating representations of patterns provides the connection between the mathematical proof and mathematical truth.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], One.1)
     A reaction: The suggestion that patterns are at the basis of the ontology of mathematics is the most illuminating thought I have encountered in the area. It immediately opens up the possibility of maths being an entirely empirical subject.
Congruence is the strongest relationship of patterns, equivalence comes next, and mutual occurrence is the weakest [Resnik]
     Full Idea: Of the equivalence relationships which occur between patterns, congruence is the strongest, equivalence the next, and mutual occurrence the weakest. None of these is identity, which would require the same position.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], Three.10.3)
     A reaction: This gives some indication of how an account of mathematics as a science of patterns might be built up. Presumably the recognition of these 'degrees of strength' cannot be straightforward observation, but will need an a priori component?
23. Ethics / C. Virtue Theory / 3. Virtues / a. Virtues
The six perfections are giving, morality, patience, vigour, meditation, and wisdom [Nagarjuna]
     Full Idea: The six perfections are of giving, morality, patience, vigour, meditation, and wisdom.
     From: Nagarjuna (Mahaprajnaparamitashastra [c.120], 88)
     A reaction: What is 'morality', if giving is not part of it? I like patience and vigour being two of the virtues, which immediately implies an Aristotelian mean (which is always what is 'appropriate').