Combining Texts

All the ideas for 'How the Laws of Physics Lie', 'W.V. Quine' and 'The Establishment of Scientific Semantics'

unexpand these ideas     |    start again     |     specify just one area for these texts


38 ideas

3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
'"It is snowing" is true if and only if it is snowing' is a partial definition of the concept of truth [Tarski]
     Full Idea: Statements of the form '"it is snowing" is true if and only if it is snowing' and '"the world war will begin in 1963" is true if and only if the world war will being in 1963' can be regarded as partial definitions of the concept of truth.
     From: Alfred Tarski (The Establishment of Scientific Semantics [1936], p.404)
     A reaction: The key word here is 'partial'. Truth is defined, presumably, when every such translation from the object language has been articulated, which is presumably impossible, given the infinity of concatenated phrases possible in a sentence.
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Sentential logic is consistent (no contradictions) and complete (entirely provable) [Orenstein]
     Full Idea: Sentential logic has been proved consistent and complete; its consistency means that no contradictions can be derived, and its completeness assures us that every one of the logical truths can be proved.
     From: Alex Orenstein (W.V. Quine [2002], Ch.5)
     A reaction: The situation for quantificational logic is not quite so clear (Orenstein p.98). I do not presume that being consistent and complete makes it necessarily better as a tool in the real world.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
Axiomatization simply picks from among the true sentences a few to play a special role [Orenstein]
     Full Idea: In axiomatizing, we are merely sorting out among the truths of a science those which will play a special role, namely, serve as axioms from which we derive the others. The sentences are already true in a non-conventional or ordinary sense.
     From: Alex Orenstein (W.V. Quine [2002], Ch.5)
     A reaction: If you were starting from scratch, as Euclidean geometers may have felt they were doing, you might want to decide which are the simplest truths. Axiomatizing an established system is a more advanced activity.
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
S4: 'poss that poss that p' implies 'poss that p'; S5: 'poss that nec that p' implies 'nec that p' [Orenstein]
     Full Idea: The five systems of propositional modal logic contain successively stronger conceptions of necessity. In S4 'it is poss that it is poss that p' implies 'it is poss that p'. In S5, 'it is poss that it is nec that p' implies 'it is nec that p'.
     From: Alex Orenstein (W.V. Quine [2002], Ch.7)
     A reaction: C.I. Lewis originated this stuff. Any serious student of modality is probably going to have to pick a system. E.g. Nathan Salmon says that the correct modal logic is even weaker than S4.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Unlike elementary logic, set theory is not complete [Orenstein]
     Full Idea: The incompleteness of set theory contrasts sharply with the completeness of elementary logic.
     From: Alex Orenstein (W.V. Quine [2002], Ch.5)
     A reaction: This seems to be Quine's reason for abandoning the Frege-Russell logicist programme (quite apart from the problems raised by Gödel.
4. Formal Logic / G. Formal Mereology / 1. Mereology
Mereology has been exploited by some nominalists to achieve the effects of set theory [Orenstein]
     Full Idea: The theory of mereology has had a history of being exploited by nominalists to achieve some of the effects of set theory.
     From: Alex Orenstein (W.V. Quine [2002], Ch.3)
     A reaction: Some writers refer to mereology as a 'theory', and others as an area of study. This appears to be an interesting line of investigation. Orenstein says Quine and Goodman showed its limitations.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
A language: primitive terms, then definition rules, then sentences, then axioms, and finally inference rules [Tarski]
     Full Idea: For a language, we must enumerate the primitive terms, and the rules of definition for new terms. Then we must distinguish the sentences, and separate out the axioms from amng them, and finally add rules of inference.
     From: Alfred Tarski (The Establishment of Scientific Semantics [1936], p.402)
     A reaction: [compressed] This lays down the standard modern procedure for defining a logical language. Once all of this is in place, we then add a semantics and we are in business. Natural deduction tries to do without the axioms.
5. Theory of Logic / G. Quantification / 1. Quantification
Traditionally, universal sentences had existential import, but were later treated as conditional claims [Orenstein]
     Full Idea: In traditional logic from Aristotle to Kant, universal sentences have existential import, but Brentano and Boole construed them as universal conditionals (such as 'for anything, if it is a man, then it is mortal').
     From: Alex Orenstein (W.V. Quine [2002], Ch.2)
     A reaction: I am sympathetic to the idea that even the 'existential' quantifier should be treated as conditional, or fictional. Modern Christians may well routinely quantify over angels, without actually being committed to them.
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
The substitution view of quantification says a sentence is true when there is a substitution instance [Orenstein]
     Full Idea: The substitution view of quantification explains 'there-is-an-x-such-that x is a man' as true when it has a true substitution instance, as in the case of 'Socrates is a man', so the quantifier can be read as 'it is sometimes true that'.
     From: Alex Orenstein (W.V. Quine [2002], Ch.5)
     A reaction: The word 'true' crops up twice here. The alternative (existential-referential) view cites objects, so the substitution view is a more linguistic approach.
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Semantics is the concepts of connections of language to reality, such as denotation, definition and truth [Tarski]
     Full Idea: Semantics is the totality of considerations concerning concepts which express connections between expressions of a language and objects and states of affairs referred to by these expressions. Examples are denotation, satisfaction, definition and truth.
     From: Alfred Tarski (The Establishment of Scientific Semantics [1936], p.401)
     A reaction: Interestingly, he notes that it 'is not commonly recognised' that truth is part of semantics. Nowadays truth seems to be the central concept in most semantics.
A language containing its own semantics is inconsistent - but we can use a second language [Tarski]
     Full Idea: People have not been aware that the language about which we speak need by no means coincide with the language in which we speak. ..But the language which contains its own semantics must inevitably be inconsistent.
     From: Alfred Tarski (The Establishment of Scientific Semantics [1936], p.402)
     A reaction: It seems that Tarski was driven to propose the metalanguage approach mainly by the Liar Paradox.
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
A sentence is satisfied when we can assert the sentence when the variables are assigned [Tarski]
     Full Idea: Here is a partial definition of the concept of satisfaction: John and Peter satisfy the sentential function 'X and Y are brothers' if and only if John and Peter are brothers.
     From: Alfred Tarski (The Establishment of Scientific Semantics [1936], p.405)
     A reaction: Satisfaction applies to open sentences and truth to closed sentences (with named objects). He uses the notion of total satisfaction to define truth. The example is a partial definition, not just an illustration.
Satisfaction is the easiest semantical concept to define, and the others will reduce to it [Tarski]
     Full Idea: It has been found useful in defining semantical concepts to deal first with the concept of satisfaction; both because the definition of this concept presents relatively few difficulties, and because the other semantical concepts are easily reduced to it.
     From: Alfred Tarski (The Establishment of Scientific Semantics [1936], p.406)
     A reaction: See Idea 13339 for his explanation of satisfaction. We just say that a open sentence is 'acceptable' or 'assertible' (or even 'true') when particular values are assigned to the variables. Then sentence is then 'satisfied'.
5. Theory of Logic / K. Features of Logics / 2. Consistency
Using the definition of truth, we can prove theories consistent within sound logics [Tarski]
     Full Idea: Using the definition of truth we are in a position to carry out the proof of consistency for deductive theories in which only (materially) true sentences are (formally) provable.
     From: Alfred Tarski (The Establishment of Scientific Semantics [1936], p.407)
     A reaction: This is evidently what Tarski saw as the most important first fruit of his new semantic theory of truth.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The whole numbers are 'natural'; 'rational' numbers include fractions; the 'reals' include root-2 etc. [Orenstein]
     Full Idea: The 'natural' numbers are the whole numbers 1, 2, 3 and so on. The 'rational' numbers consist of the natural numbers plus the fractions. The 'real' numbers include the others, plus numbers such a pi and root-2, which cannot be expressed as fractions.
     From: Alex Orenstein (W.V. Quine [2002], Ch.2)
     A reaction: The 'irrational' numbers involved entities such as root-minus-1. Philosophical discussions in ontology tend to focus on the existence of the real numbers.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
The logicists held that is-a-member-of is a logical constant, making set theory part of logic [Orenstein]
     Full Idea: The question to be posed is whether is-a-member-of should be considered a logical constant, that is, does logic include set theory. Frege, Russell and Whitehead held that it did.
     From: Alex Orenstein (W.V. Quine [2002], Ch.5)
     A reaction: This is obviously the key element in the logicist programme. The objection seems to be that while first-order logic is consistent and complete, set theory is not at all like that, and so is part of a different world.
7. Existence / E. Categories / 3. Proposed Categories
Just individuals in Nominalism; add sets for Extensionalism; add properties, concepts etc for Intensionalism [Orenstein]
     Full Idea: Modest ontologies are Nominalism (Goodman), admitting only concrete individuals; and Extensionalism (Quine/Davidson) which admits individuals and sets; but Intensionalists (Frege/Carnap/Church/Marcus/Kripke) may have propositions, properties, concepts.
     From: Alex Orenstein (W.V. Quine [2002], Ch.3)
     A reaction: I don't like sets, because of Idea 7035. Even the ontology of individuals could collapse dramatically (see the ideas of Merricks, e.g. 6124). The intensional items may be real enough, but needn't have a place at the ontological high table.
7. Existence / E. Categories / 4. Category Realism
Causality indicates which properties are real [Cartwright,N]
     Full Idea: Causality is a clue to what properties are real.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 9.3)
     A reaction: An interesting variant on the Shoemaker proposal that properties actually are causal. I'm not sure that there is anything more to causality that the expression in action of properties, which I take to be powers. Structures are not properties.
14. Science / B. Scientific Theories / 1. Scientific Theory
The Principle of Conservatism says we should violate the minimum number of background beliefs [Orenstein]
     Full Idea: The principle of conservatism in choosing between theories is a maxim of minimal mutilation, stating that of competing theories, all other things being equal, choose the one that violates the fewest background beliefs held.
     From: Alex Orenstein (W.V. Quine [2002], Ch.2)
     A reaction: In this sense, all rational people should be conservatives. The idea is a modern variant of Hume's objection to miracles (Idea 2227). A Kuhnian 'paradigm shift' is the dramatic moment when this principle no longer seems appropriate.
14. Science / D. Explanation / 2. Types of Explanation / a. Types of explanation
Two main types of explanation are by causes, or by citing a theoretical framework [Cartwright,N]
     Full Idea: In explaining a phenomenon one can cite the causes of that phenomenon; or one can set the phenomenon in a general theoretical framework.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 4.1)
     A reaction: The thing is, you need to root an explanation in something taken as basic, and theoretical frameworks need further explanation, whereas causes seem to be basic.
14. Science / D. Explanation / 2. Types of Explanation / c. Explanations by coherence
An explanation is a model that fits a theory and predicts the phenomenological laws [Cartwright,N]
     Full Idea: To explain a phenomenon is to find a model that fits it into the basic framework of the theory and that thus allows us to derive analogues for the messy and complicated phenomenological laws that are true of it.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 8.3)
     A reaction: This summarises the core of her view in this book. She is after models rather than laws, and the models are based on causes.
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
The covering law view assumes that each phenomenon has a 'right' explanation [Cartwright,N]
     Full Idea: The covering-law account supposes that there is, in principle, one 'right' explanation for each phenomenon.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: Presumably the law is held to be 'right', but there must be a bit of flexibility in describing the initial conditions, and the explanandum itself.
Laws get the facts wrong, and explanation rests on improvements and qualifications of laws [Cartwright,N]
     Full Idea: We explain by ceteris paribus laws, by composition of causes, and by approximations that improve on what the fundamental laws dictate. In all of these cases the fundamental laws patently do not get the facts right.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: It is rather headline-grabbing to say in this case that laws do not get the facts right. If they were actually 'wrong' and 'lied', there wouldn't be much point in building explanations on them.
Laws apply to separate domains, but real explanations apply to intersecting domains [Cartwright,N]
     Full Idea: When different kinds of causes compose, we want to explain what happens in the intersection of different domains. But the laws we use are designed only to tell truly what happens in each domain separately.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: Since presumably the laws are discovered through experiments which try to separate out a single domain, in those circumstances they actually are true, so they don't 'lie'.
Covering-law explanation lets us explain storms by falling barometers [Cartwright,N]
     Full Idea: Much criticism of the original covering-law model objects that it lets in too much. It seems we can explain Henry's failure to get pregnant by his taking birth control pills, and we can explain the storm by the falling barometer.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 2.0)
     A reaction: I take these examples to show that true explanations must be largely causal in character. The physicality of causation is what matters, not 'laws'. I'd say the same of attempts to account for causation through counterfactuals.
I disagree with the covering-law view that there is a law to cover every single case [Cartwright,N]
     Full Idea: Covering-law theorists tend to think that nature is well-regulated; in the extreme, that there is a law to cover every case. I do not.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 2.2)
     A reaction: The problem of coincidence is somewhere at the back of this thought. Innumerable events have their own explanations, but it is hard to explain their coincidence (see Aristotle's case of bumping into a friend in the market).
You can't explain one quail's behaviour by just saying that all quails do it [Cartwright,N]
     Full Idea: 'Why does that quail in the garden bob its head up and down in that funny way whenever it walks?' …'Because they all do'.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 3.5)
     A reaction: She cites this as an old complaint against the covering-law model of explanation. It captures beautifully the basic error of the approach. We want to know 'why', rather than just have a description of the pattern. 'They all do' is useful information.
14. Science / D. Explanation / 3. Best Explanation / c. Against best explanation
In science, best explanations have regularly turned out to be false [Cartwright,N]
     Full Idea: There are a huge number of cases in the history of science where we now know our best explanations were false.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 5.3)
     A reaction: [She cites Laudan 1981 for this] The Ptolemaic system and aether are the standard example cited for this. I believe strongly in the importance of best explanation. Only a fool would just accept the best explanation available. Coherence is needed.
19. Language / A. Nature of Meaning / 10. Denial of Meanings
People presume meanings exist because they confuse meaning and reference [Orenstein]
     Full Idea: A good part of the confidence people have that there are meanings rests on the confusion of meaning and reference.
     From: Alex Orenstein (W.V. Quine [2002], Ch.6)
     A reaction: An important point. Everyone assumes that sentences link to the world, but Frege shows that that is not part of meaning. Words like prepositions and conjunctions ('to', 'and') don't have 'a meaning' apart from their function and use.
19. Language / C. Assigning Meanings / 3. Predicates
Three ways for 'Socrates is human' to be true are nominalist, platonist, or Montague's way [Orenstein]
     Full Idea: 'Socrates is human' is true if 1) subject referent is identical with a predicate referent (Nominalism), 2) subject reference member of the predicate set, or the subject has that property (Platonism), 3) predicate set a member of the subject set (Montague)
     From: Alex Orenstein (W.V. Quine [2002], Ch.3)
     A reaction: Orenstein offers these as alternatives to Quine's 'inscrutability of reference' thesis, which makes the sense unanalysable.
19. Language / D. Propositions / 4. Mental Propositions
If two people believe the same proposition, this implies the existence of propositions [Orenstein]
     Full Idea: If we can say 'there exists a p such that John believes p and Barbara believes p', logical forms such as this are cited as evidence for our ontological commitment to propositions.
     From: Alex Orenstein (W.V. Quine [2002], Ch.7)
     A reaction: Opponents of propositions (such as Quine) will, of course, attempt to revise the logical form to eliminate the quantification over propositions. See Orenstein's outline on p.171.
26. Natural Theory / C. Causation / 8. Particular Causation / e. Probabilistic causation
A cause won't increase the effect frequency if other causes keep interfering [Cartwright,N]
     Full Idea: A cause ought to increase the frequency of the effect, but this fact may not show up in the probabilities if other causes are at work.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 1.1)
     A reaction: [She cites Patrick Suppes for this one] Presumably in experimental situations you can weed out the interference, but that threatens to eliminate mere 'probability' entirely.
26. Natural Theory / D. Laws of Nature / 2. Types of Laws
There are fundamental explanatory laws (false!), and phenomenological laws (regularities) [Cartwright,N, by Bird]
     Full Idea: Nancy Cartwright distinguishes between 'fundamental explanatory laws', which we should not believe, and 'phenomenological laws', which are regularities established on the basis of observation.
     From: report of Nancy Cartwright (How the Laws of Physics Lie [1983]) by Alexander Bird - Philosophy of Science Ch.4
     A reaction: The distinction is helpful, so that we can be clearer about what everyone is claiming. We can probably all agree on the phenomenological laws, which are epistemological. Personally I claim truth for the best fundamental explanatory laws.
Laws of appearances are 'phenomenological'; laws of reality are 'theoretical' [Cartwright,N]
     Full Idea: Philosophers distinguish phenomenological from theoretical laws. Phenomenological laws are about appearances; theoretical ones are about the reality behind the appearances.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: I'm suspecting that Humeans only really believe in the phenomenological kind. I'm only interested in the theoretical kind, and I take inference to the best explanation to be the bridge between the two. Cartwright rejects the theoretical laws.
26. Natural Theory / D. Laws of Nature / 4. Regularities / b. Best system theory
Good organisation may not be true, and the truth may not organise very much [Cartwright,N]
     Full Idea: There is no reason to think that the principles that best organise will be true, nor that the principles that are true will organise much.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 2.5)
     A reaction: This is aimed at the Mill-Ramsey-Lewis account of laws, as axiomatisations of the observed patterns in nature.
26. Natural Theory / D. Laws of Nature / 11. Against Laws of Nature
There are few laws for when one theory meets another [Cartwright,N]
     Full Idea: Where theories intersect, laws are usually hard to come by.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 2.3)
     A reaction: There are attempts at so-called 'bridge laws', to get from complex theories to simple ones, but her point is well made about theories on the same 'level'.
To get from facts to equations, we need a prepared descriptions suited to mathematics [Cartwright,N]
     Full Idea: To get from a detailed factual knowledge of a situation to an equation, we must prepare the description of the situation to meet the mathematical needs of the theory.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: She is clearly on to something here, as Galileo is blatantly wrong in his claim that the book of nature is written in mathematics. Mathematics is the best we can manage in getting a grip on the chaos.
Simple laws have quite different outcomes when they act in combinations [Cartwright,N]
     Full Idea: For explanation simple laws must have the same form when they act together as when they act singly. ..But then what the law states cannot literally be true, for the consequences that occur if it acts alone are not what occurs when they act in combination.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 3.6)
     A reaction: This is Cartwright's basic thesis. Her point is that the laws 'lie', because they claim to predict a particular outcome which never ever actually occurs. She says we could know all the laws, and still not be able to explain anything.