Combining Texts

All the ideas for 'How the Laws of Physics Lie', 'A Structural Account of Mathematics' and 'Mathematical Thought from Ancient to Modern Times'

unexpand these ideas     |    start again     |     specify just one area for these texts


35 ideas

4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Realists about sets say there exists a null set in the real world, with no members [Chihara]
     Full Idea: In the Gödelian realistic view of set theory the statement that there is a null set as the assertion of the existence in the real world of a set that has no members.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 11.6)
     A reaction: It seems to me obvious that such a claim is nonsense on stilts. 'In the beginning there was the null set'?
We only know relational facts about the empty set, but nothing intrinsic [Chihara]
     Full Idea: Everything we know about the empty set is relational; we know that nothing is the membership relation to it. But what do we know about its 'intrinsic properties'?
     From: Charles Chihara (A Structural Account of Mathematics [2004], 01.5)
     A reaction: Set theory seems to depend on the concept of the empty set. Modern theorists seem over-influenced by the Quine-Putnam view, that if science needs it, we must commit ourselves to its existence.
In simple type theory there is a hierarchy of null sets [Chihara]
     Full Idea: In simple type theory, there is a null set of type 1, a null set of type 2, a null set of type 3..... (Quine has expressed his distaste for this).
     From: Charles Chihara (A Structural Account of Mathematics [2004], 07.4)
     A reaction: It is bad enough trying to individuate the unique null set, without whole gangs of them drifting indistinguishably through the logical fog. All rational beings should share Quine's distaste, even if Quine is wrong.
The null set is a structural position which has no other position in membership relation [Chihara]
     Full Idea: In the structuralist view of sets, in structures of a certain sort the null set is taken to be a position (or point) that will be such that no other position (or point) will be in the membership relation to it.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 11.6)
     A reaction: It would be hard to conceive of something having a place in a structure if nothing had a relation to it, so is the null set related to singeton sets but not there members. It will be hard to avoid Platonism here. Set theory needs the null set.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
What is special about Bill Clinton's unit set, in comparison with all the others? [Chihara]
     Full Idea: What is it about the intrinsic properties of just that one unit set in virtue of which Bill Clinton is related to just it and not to any other unit sets in the set-theoretical universe?
     From: Charles Chihara (A Structural Account of Mathematics [2004], 01.5)
     A reaction: If we all kept pet woodlice, we had better not hold a wood louse rally, or we might go home with the wrong one. My singleton seems seems remarkably like yours. Could we, perhaps, swap, just for a change?
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
The set theorist cannot tell us what 'membership' is [Chihara]
     Full Idea: The set theorist cannot tell us anything about the true relationship of membership.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 01.5)
     A reaction: If three unrelated objects suddenly became members of a set, it is hard to see how the world would have changed, except in the minds of those thinking about it.
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
ZFU refers to the physical world, when it talks of 'urelements' [Chihara]
     Full Idea: ZFU set theory talks about physical objects (the urelements), and hence is in some way about the physical world.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 11.5)
     A reaction: This sounds a bit surprising, given that the whole theory would appear to be quite unaffected if God announced that idealism is true and there are no physical objects.
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
A pack of wolves doesn't cease when one member dies [Chihara]
     Full Idea: A pack of wolves is not thought to go out of existence just because some member of the pack is killed.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 07.5)
     A reaction: The point is that the formal extensional notion of a set doesn't correspond to our common sense notion of a group or class. Even a highly scientific theory about wolves needs a loose notion of a wolf pack.
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
The mathematics of relations is entirely covered by ordered pairs [Chihara]
     Full Idea: Everything one needs to do with relations in mathematics can be done by taking a relation to be a set of ordered pairs. (Ordered triples etc. can be defined as order pairs, so that <x,y,z> is <x,<y,z>>).
     From: Charles Chihara (A Structural Account of Mathematics [2004], 07.2)
     A reaction: How do we distinguish 'I own my cat' from 'I love my cat'? Or 'I quite like my cat' from 'I adore my cat'? Nevertheless, this is an interesting starting point for a discussion of relations.
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Axioms reveal the underlying assumptions, and reveal relationships between different areas [Kline]
     Full Idea: The axiomatic method ....revealed precisely what assumptions underlie each branch [of mathematics] and made possible the comparison and clarification of the relationships of various branches.
     From: Morris Kline (Mathematical Thought from Ancient to Modern Times [1972], p.1027), quoted by Penelope Maddy - Defending the Axioms 1.3
     A reaction: I take this to be the 'fruitfulness' which marks out the discovery of the essence of something.
5. Theory of Logic / K. Features of Logics / 2. Consistency
Sentences are consistent if they can all be true; for Frege it is that no contradiction can be deduced [Chihara]
     Full Idea: In first-order logic a set of sentences is 'consistent' iff there is an interpretation (or structure) in which the set of sentences is true. ..For Frege, though, a set of sentences is consistent if it is not possible to deduce a contradiction from it.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 02.1)
     A reaction: The first approach seems positive, the second negative. Frege seems to have a higher standard, which is appealing, but the first one seems intuitively right. There is a possible world where this could work.
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Analytic geometry gave space a mathematical structure, which could then have axioms [Chihara]
     Full Idea: With the invention of analytic geometry (by Fermat and then Descartes) physical space could be represented as having a mathematical structure, which could eventually lead to its axiomatization (by Hilbert).
     From: Charles Chihara (A Structural Account of Mathematics [2004], 02.3)
     A reaction: The idea that space might have axioms seems to be pythagoreanism run riot. I wonder if there is some flaw at the heart of Einstein's General Theory because of this?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
We can replace existence of sets with possibility of constructing token sentences [Chihara, by MacBride]
     Full Idea: Chihara's 'constructability theory' is nominalist - mathematics is reducible to a simple theory of types. Instead of talk of sets {x:x is F}, we talk of open sentences Fx defining them. Existence claims become constructability of sentence tokens.
     From: report of Charles Chihara (A Structural Account of Mathematics [2004]) by Fraser MacBride - Review of Chihara's 'Structural Acc of Maths' p.81
     A reaction: This seems to be approaching the problem in a Fregean way, by giving an account of the semantics. Chihara is trying to evade the Quinean idea that assertion is ontological commitment. But has Chihara retreated too far? How does he assert existence?
7. Existence / D. Theories of Reality / 11. Ontological Commitment / e. Ontological commitment problems
If a successful theory confirms mathematics, presumably a failed theory disconfirms it? [Chihara]
     Full Idea: If mathematics shares whatever confirmation accrues to the theories using it, would it not be reasonable to suppose that mathematics shares whatever disconfirmation accrues to the theories using it?
     From: Charles Chihara (A Structural Account of Mathematics [2004], 05.8)
     A reaction: Presumably Quine would bite the bullet here, although maths is much closer to the centre of his web of belief, and so far less likely to require adjustment. In practice, though, mathematics is not challenged whenever an experiment fails.
No scientific explanation would collapse if mathematical objects were shown not to exist [Chihara]
     Full Idea: Evidently, no scientific explanations of specific phenomena would collapse as a result of any hypothetical discovery that no mathematical objects exist.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 09.1)
     A reaction: It is inconceivable that anyone would challenge this claim. A good model seems to be drama; a play needs commitment from actors and audience, even when we know it is fiction. The point is that mathematics doesn't collapse either.
7. Existence / E. Categories / 4. Category Realism
Causality indicates which properties are real [Cartwright,N]
     Full Idea: Causality is a clue to what properties are real.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 9.3)
     A reaction: An interesting variant on the Shoemaker proposal that properties actually are causal. I'm not sure that there is anything more to causality that the expression in action of properties, which I take to be powers. Structures are not properties.
14. Science / D. Explanation / 2. Types of Explanation / a. Types of explanation
Two main types of explanation are by causes, or by citing a theoretical framework [Cartwright,N]
     Full Idea: In explaining a phenomenon one can cite the causes of that phenomenon; or one can set the phenomenon in a general theoretical framework.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 4.1)
     A reaction: The thing is, you need to root an explanation in something taken as basic, and theoretical frameworks need further explanation, whereas causes seem to be basic.
14. Science / D. Explanation / 2. Types of Explanation / c. Explanations by coherence
An explanation is a model that fits a theory and predicts the phenomenological laws [Cartwright,N]
     Full Idea: To explain a phenomenon is to find a model that fits it into the basic framework of the theory and that thus allows us to derive analogues for the messy and complicated phenomenological laws that are true of it.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 8.3)
     A reaction: This summarises the core of her view in this book. She is after models rather than laws, and the models are based on causes.
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
Laws get the facts wrong, and explanation rests on improvements and qualifications of laws [Cartwright,N]
     Full Idea: We explain by ceteris paribus laws, by composition of causes, and by approximations that improve on what the fundamental laws dictate. In all of these cases the fundamental laws patently do not get the facts right.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: It is rather headline-grabbing to say in this case that laws do not get the facts right. If they were actually 'wrong' and 'lied', there wouldn't be much point in building explanations on them.
Laws apply to separate domains, but real explanations apply to intersecting domains [Cartwright,N]
     Full Idea: When different kinds of causes compose, we want to explain what happens in the intersection of different domains. But the laws we use are designed only to tell truly what happens in each domain separately.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: Since presumably the laws are discovered through experiments which try to separate out a single domain, in those circumstances they actually are true, so they don't 'lie'.
Covering-law explanation lets us explain storms by falling barometers [Cartwright,N]
     Full Idea: Much criticism of the original covering-law model objects that it lets in too much. It seems we can explain Henry's failure to get pregnant by his taking birth control pills, and we can explain the storm by the falling barometer.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 2.0)
     A reaction: I take these examples to show that true explanations must be largely causal in character. The physicality of causation is what matters, not 'laws'. I'd say the same of attempts to account for causation through counterfactuals.
I disagree with the covering-law view that there is a law to cover every single case [Cartwright,N]
     Full Idea: Covering-law theorists tend to think that nature is well-regulated; in the extreme, that there is a law to cover every case. I do not.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 2.2)
     A reaction: The problem of coincidence is somewhere at the back of this thought. Innumerable events have their own explanations, but it is hard to explain their coincidence (see Aristotle's case of bumping into a friend in the market).
You can't explain one quail's behaviour by just saying that all quails do it [Cartwright,N]
     Full Idea: 'Why does that quail in the garden bob its head up and down in that funny way whenever it walks?' …'Because they all do'.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 3.5)
     A reaction: She cites this as an old complaint against the covering-law model of explanation. It captures beautifully the basic error of the approach. We want to know 'why', rather than just have a description of the pattern. 'They all do' is useful information.
The covering law view assumes that each phenomenon has a 'right' explanation [Cartwright,N]
     Full Idea: The covering-law account supposes that there is, in principle, one 'right' explanation for each phenomenon.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: Presumably the law is held to be 'right', but there must be a bit of flexibility in describing the initial conditions, and the explanandum itself.
14. Science / D. Explanation / 3. Best Explanation / c. Against best explanation
In science, best explanations have regularly turned out to be false [Cartwright,N]
     Full Idea: There are a huge number of cases in the history of science where we now know our best explanations were false.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 5.3)
     A reaction: [She cites Laudan 1981 for this] The Ptolemaic system and aether are the standard example cited for this. I believe strongly in the importance of best explanation. Only a fool would just accept the best explanation available. Coherence is needed.
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
I prefer the open sentences of a Constructibility Theory, to Platonist ideas of 'equivalence classes' [Chihara]
     Full Idea: What I refer to as an 'equivalence class' (of line segments of a particular length) is an open sentence in my Constructibility Theory. I just use this terminology of the Platonist for didactic purposes.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 09.10)
     A reaction: This is because 'equivalence classes' is committed to the existence of classes, which is Quinean Platonism. I am with Chihara in wanting a story that avoids such things. Kit Fine is investigating similar notions of rules of construction.
19. Language / B. Reference / 3. Direct Reference / b. Causal reference
Mathematical entities are causally inert, so the causal theory of reference won't work for them [Chihara]
     Full Idea: Causal theories of reference seem doomed to failure for the case of reference to mathematical entities, since such entities are evidently causally inert.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 01.3)
     A reaction: Presumably you could baptise a fictional entity such as 'Polonius', and initiate a social causal chain, with a tradition of reference. You could baptise a baby in absentia.
26. Natural Theory / C. Causation / 8. Particular Causation / e. Probabilistic causation
A cause won't increase the effect frequency if other causes keep interfering [Cartwright,N]
     Full Idea: A cause ought to increase the frequency of the effect, but this fact may not show up in the probabilities if other causes are at work.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 1.1)
     A reaction: [She cites Patrick Suppes for this one] Presumably in experimental situations you can weed out the interference, but that threatens to eliminate mere 'probability' entirely.
26. Natural Theory / D. Laws of Nature / 2. Types of Laws
There are fundamental explanatory laws (false!), and phenomenological laws (regularities) [Cartwright,N, by Bird]
     Full Idea: Nancy Cartwright distinguishes between 'fundamental explanatory laws', which we should not believe, and 'phenomenological laws', which are regularities established on the basis of observation.
     From: report of Nancy Cartwright (How the Laws of Physics Lie [1983]) by Alexander Bird - Philosophy of Science Ch.4
     A reaction: The distinction is helpful, so that we can be clearer about what everyone is claiming. We can probably all agree on the phenomenological laws, which are epistemological. Personally I claim truth for the best fundamental explanatory laws.
Laws of appearances are 'phenomenological'; laws of reality are 'theoretical' [Cartwright,N]
     Full Idea: Philosophers distinguish phenomenological from theoretical laws. Phenomenological laws are about appearances; theoretical ones are about the reality behind the appearances.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: I'm suspecting that Humeans only really believe in the phenomenological kind. I'm only interested in the theoretical kind, and I take inference to the best explanation to be the bridge between the two. Cartwright rejects the theoretical laws.
26. Natural Theory / D. Laws of Nature / 4. Regularities / b. Best system theory
Good organisation may not be true, and the truth may not organise very much [Cartwright,N]
     Full Idea: There is no reason to think that the principles that best organise will be true, nor that the principles that are true will organise much.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 2.5)
     A reaction: This is aimed at the Mill-Ramsey-Lewis account of laws, as axiomatisations of the observed patterns in nature.
26. Natural Theory / D. Laws of Nature / 11. Against Laws of Nature
To get from facts to equations, we need a prepared descriptions suited to mathematics [Cartwright,N]
     Full Idea: To get from a detailed factual knowledge of a situation to an equation, we must prepare the description of the situation to meet the mathematical needs of the theory.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: She is clearly on to something here, as Galileo is blatantly wrong in his claim that the book of nature is written in mathematics. Mathematics is the best we can manage in getting a grip on the chaos.
Simple laws have quite different outcomes when they act in combinations [Cartwright,N]
     Full Idea: For explanation simple laws must have the same form when they act together as when they act singly. ..But then what the law states cannot literally be true, for the consequences that occur if it acts alone are not what occurs when they act in combination.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 3.6)
     A reaction: This is Cartwright's basic thesis. Her point is that the laws 'lie', because they claim to predict a particular outcome which never ever actually occurs. She says we could know all the laws, and still not be able to explain anything.
There are few laws for when one theory meets another [Cartwright,N]
     Full Idea: Where theories intersect, laws are usually hard to come by.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 2.3)
     A reaction: There are attempts at so-called 'bridge laws', to get from complex theories to simple ones, but her point is well made about theories on the same 'level'.
27. Natural Reality / B. Modern Physics / 4. Standard Model / a. Concept of matter
'Gunk' is an individual possessing no parts that are atoms [Chihara]
     Full Idea: An 'atomless gunk' is defined to be an individual possessing no parts that are atoms.
     From: Charles Chihara (A Structural Account of Mathematics [2004], App A)
     A reaction: [Lewis coined it] If you ask what are a-toms made of and what are ideas made of, the only answer we can offer is that the a-toms are made of gunk, and the ideas aren't made of anything, which is still bad news for the existence of ideas.