Combining Texts

All the ideas for 'How the Laws of Physics Lie', 'Sweet Dreams' and 'Theory of Science (Wissenschaftslehre, 4 vols)'

unexpand these ideas     |    start again     |     specify just one area for these texts


31 ideas

2. Reason / B. Laws of Thought / 1. Laws of Thought
The laws of thought are true, but they are not the axioms of logic [Bolzano, by George/Van Evra]
     Full Idea: Bolzano said the 'laws of thought' (identity, contradiction, excluded middle) are true, but nothing of interest follows from them. Logic obeys them, but they are not logic's first principles or axioms.
     From: report of Bernard Bolzano (Theory of Science (Wissenschaftslehre, 4 vols) [1837], §3) by George / Van Evra - The Rise of Modern Logic
     A reaction: An interesting and crucial distinction. For samples of proposed axioms of logic, see Ideas 6408, 7798 and 7797.
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Bolzano wanted to reduce all of geometry to arithmetic [Bolzano, by Brown,JR]
     Full Idea: Bolzano if the father of 'arithmetization', which sought to found all of analysis on the concepts of arithmetic and to eliminate geometrical notions entirely (with logicism taking it a step further, by reducing arithmetic to logic).
     From: report of Bernard Bolzano (Theory of Science (Wissenschaftslehre, 4 vols) [1837]) by James Robert Brown - Philosophy of Mathematics Ch. 3
     A reaction: Brown's book is a defence of geometrical diagrams against Bolzano's approach. Bolzano sounds like the modern heir of Pythagoras, if he thinks that space is essentially numerical.
6. Mathematics / C. Sources of Mathematics / 2. Intuition of Mathematics
Bolzano began the elimination of intuition, by proving something which seemed obvious [Bolzano, by Dummett]
     Full Idea: Bolzano began the process of eliminating intuition from analysis, by proving something apparently obvious (that as continuous function must be zero at some point). Proof reveals on what a theorem rests, and that it is not intuition.
     From: report of Bernard Bolzano (Theory of Science (Wissenschaftslehre, 4 vols) [1837]) by Michael Dummett - Frege philosophy of mathematics Ch.6
     A reaction: Kant was the target of Bolzano's attack. Two responses might be to say that many other basic ideas are intuited but impossible to prove, or to say that proof itself depends on intuition, if you dig deep enough.
7. Existence / C. Structure of Existence / 1. Grounding / c. Grounding and explanation
Philosophical proofs in mathematics establish truths, and also show their grounds [Bolzano, by Correia/Schnieder]
     Full Idea: Mathematical proofs are philosophical in method if they do not only demonstrate that a certain mathematical truth holds but if they also disclose why it holds, that is, if they uncover its grounds.
     From: report of Bernard Bolzano (Theory of Science (Wissenschaftslehre, 4 vols) [1837]) by Correia,F/Schnieder,B - Grounding: an opinionated introduction 2.3
     A reaction: I aim to defend the role of explanation in mathematics, but this says that this is only if the proofs are 'philosophical', which may be of no interest to mathematicians. Oh well, that's their loss.
7. Existence / E. Categories / 4. Category Realism
Causality indicates which properties are real [Cartwright,N]
     Full Idea: Causality is a clue to what properties are real.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 9.3)
     A reaction: An interesting variant on the Shoemaker proposal that properties actually are causal. I'm not sure that there is anything more to causality that the expression in action of properties, which I take to be powers. Structures are not properties.
12. Knowledge Sources / E. Direct Knowledge / 2. Intuition
Bolzano wanted to avoid Kantian intuitions, and prove everything that could be proved [Bolzano, by Dummett]
     Full Idea: Bolzano was determined to expel Kantian intuition from analysis, and to prove from first principles anything that could be proved, no matter how obvious it might seem when thought of in geometrical terms.
     From: report of Bernard Bolzano (Theory of Science (Wissenschaftslehre, 4 vols) [1837]) by Michael Dummett - The Philosophy of Mathematics 2.3
     A reaction: This is characteristic of the Enlightenment Project, well after the Enlightenment. It is a step towards Frege's attack on 'psychologism' in mathematics. The problem is that it led us into a spurious platonism. We live in troubled times.
14. Science / D. Explanation / 2. Types of Explanation / a. Types of explanation
Two main types of explanation are by causes, or by citing a theoretical framework [Cartwright,N]
     Full Idea: In explaining a phenomenon one can cite the causes of that phenomenon; or one can set the phenomenon in a general theoretical framework.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 4.1)
     A reaction: The thing is, you need to root an explanation in something taken as basic, and theoretical frameworks need further explanation, whereas causes seem to be basic.
14. Science / D. Explanation / 2. Types of Explanation / c. Explanations by coherence
An explanation is a model that fits a theory and predicts the phenomenological laws [Cartwright,N]
     Full Idea: To explain a phenomenon is to find a model that fits it into the basic framework of the theory and that thus allows us to derive analogues for the messy and complicated phenomenological laws that are true of it.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 8.3)
     A reaction: This summarises the core of her view in this book. She is after models rather than laws, and the models are based on causes.
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
The covering law view assumes that each phenomenon has a 'right' explanation [Cartwright,N]
     Full Idea: The covering-law account supposes that there is, in principle, one 'right' explanation for each phenomenon.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: Presumably the law is held to be 'right', but there must be a bit of flexibility in describing the initial conditions, and the explanandum itself.
Laws get the facts wrong, and explanation rests on improvements and qualifications of laws [Cartwright,N]
     Full Idea: We explain by ceteris paribus laws, by composition of causes, and by approximations that improve on what the fundamental laws dictate. In all of these cases the fundamental laws patently do not get the facts right.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: It is rather headline-grabbing to say in this case that laws do not get the facts right. If they were actually 'wrong' and 'lied', there wouldn't be much point in building explanations on them.
Laws apply to separate domains, but real explanations apply to intersecting domains [Cartwright,N]
     Full Idea: When different kinds of causes compose, we want to explain what happens in the intersection of different domains. But the laws we use are designed only to tell truly what happens in each domain separately.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: Since presumably the laws are discovered through experiments which try to separate out a single domain, in those circumstances they actually are true, so they don't 'lie'.
Covering-law explanation lets us explain storms by falling barometers [Cartwright,N]
     Full Idea: Much criticism of the original covering-law model objects that it lets in too much. It seems we can explain Henry's failure to get pregnant by his taking birth control pills, and we can explain the storm by the falling barometer.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 2.0)
     A reaction: I take these examples to show that true explanations must be largely causal in character. The physicality of causation is what matters, not 'laws'. I'd say the same of attempts to account for causation through counterfactuals.
I disagree with the covering-law view that there is a law to cover every single case [Cartwright,N]
     Full Idea: Covering-law theorists tend to think that nature is well-regulated; in the extreme, that there is a law to cover every case. I do not.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 2.2)
     A reaction: The problem of coincidence is somewhere at the back of this thought. Innumerable events have their own explanations, but it is hard to explain their coincidence (see Aristotle's case of bumping into a friend in the market).
You can't explain one quail's behaviour by just saying that all quails do it [Cartwright,N]
     Full Idea: 'Why does that quail in the garden bob its head up and down in that funny way whenever it walks?' …'Because they all do'.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 3.5)
     A reaction: She cites this as an old complaint against the covering-law model of explanation. It captures beautifully the basic error of the approach. We want to know 'why', rather than just have a description of the pattern. 'They all do' is useful information.
14. Science / D. Explanation / 3. Best Explanation / c. Against best explanation
In science, best explanations have regularly turned out to be false [Cartwright,N]
     Full Idea: There are a huge number of cases in the history of science where we now know our best explanations were false.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 5.3)
     A reaction: [She cites Laudan 1981 for this] The Ptolemaic system and aether are the standard example cited for this. I believe strongly in the importance of best explanation. Only a fool would just accept the best explanation available. Coherence is needed.
15. Nature of Minds / B. Features of Minds / 5. Qualia / c. Explaining qualia
Obviously there can't be a functional anaylsis of qualia if they are defined by intrinsic properties [Dennett]
     Full Idea: If you define qualia as intrinsic properties of experiences considered in isolation from all their causes and effects, logically independent of all dispositional properties, then they are logically guaranteed to elude all broad functional analysis.
     From: Daniel C. Dennett (Sweet Dreams [2005], Ch.8)
     A reaction: This is a good point - it seems daft to reify qualia and imagine them dangling in mid-air with all their vibrant qualities - but that is a long way from saying there is nothing more to qualia than functional roles. Functions must be exlained too.
16. Persons / E. Rejecting the Self / 4. Denial of the Self
The work done by the 'homunculus in the theatre' must be spread amongst non-conscious agencies [Dennett]
     Full Idea: All the work done by the imagined homunculus in the Cartesian Theater must be distributed among various lesser agencies in the brain, none of which is conscious.
     From: Daniel C. Dennett (Sweet Dreams [2005], Ch.3)
     A reaction: Dennett's account crucially depends on consciousness being much more fragmentary than most philosophers claim it to be. It is actually full of joints, which can come apart. He may be right.
17. Mind and Body / E. Mind as Physical / 2. Reduction of Mind
Intelligent agents are composed of nested homunculi, of decreasing intelligence, ending in machines [Dennett]
     Full Idea: As long as your homunculi are more stupid and ignorant than the intelligent agent they compose, the nesting of homunculi within homunculi can be finite, bottoming out, eventually, with agents so unimpressive they can be replaced by machines.
     From: Daniel C. Dennett (Sweet Dreams [2005], Ch.6)
     A reaction: [Dennett first proposed this in 'Brainstorms' 1978]. This view was developed well by Lycan. I rate it as one of the most illuminating ideas in the modern philosophy of mind. All complex systems (like aeroplanes) have this structure.
17. Mind and Body / E. Mind as Physical / 3. Eliminativism
I don't deny consciousness; it just isn't what people think it is [Dennett]
     Full Idea: I don't maintain, of course, that human consciousness does not exist; I maintain that it is not what people often think it is.
     From: Daniel C. Dennett (Sweet Dreams [2005], Ch.3)
     A reaction: I consider Dennett to be as near as you can get to an eliminativist, but he is not stupid. As far as I can see, the modern philosopher's bogey-man, the true total eliminativist, simply doesn't exist. Eliminativists usually deny propositional attitudes.
18. Thought / B. Mechanics of Thought / 6. Artificial Thought / a. Artificial Intelligence
What matters about neuro-science is the discovery of the functional role of the chemistry [Dennett]
     Full Idea: Neuro-science matters because - and only because - we have discovered that the many different neuromodulators and other chemical messengers that diffuse throughout the brain have functional roles that make important differences.
     From: Daniel C. Dennett (Sweet Dreams [2005], Ch.1)
     A reaction: I agree with Dennett that this is the true ground for pessimism about spectacular breakthroughs in artificial intelligence, rather than abstract concerns about irreducible features of the mind like 'qualia' and 'rationality'.
19. Language / D. Propositions / 1. Propositions
Bolzano saw propositions as objective entities, existing independently of us [Bolzano, by Potter]
     Full Idea: Bolzano took the entities of which truth is predicated to be not propositions in the subjective sense but 'propositions-in-themselves' - objective entities existing independent of our apprehension.
     From: report of Bernard Bolzano (Theory of Science (Wissenschaftslehre, 4 vols) [1837]) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 02 'Emp'
     A reaction: A serious mistake. Presumably the objective propositions are all true (or there would be endless infinities of them). So what is assessed in the case of error? Something other than the objective propositions! We assess these other things!
19. Language / D. Propositions / 2. Abstract Propositions / a. Propositions as sense
Propositions are abstract structures of concepts, ready for judgement or assertion [Bolzano, by Correia/Schnieder]
     Full Idea: Bolzano conceived of propositions as abstract objects which are structured compounds of concepts and potential contents of judgements and assertions.
     From: report of Bernard Bolzano (Theory of Science (Wissenschaftslehre, 4 vols) [1837]) by Correia,F/Schnieder,B - Grounding: an opinionated introduction 2.3
     A reaction: Personally I think of propositions as brain events, the constituents of thought about the world, but that needn't contradict the view of them as 'abstract'.
A 'proposition' is the sense of a linguistic expression, and can be true or false [Bolzano]
     Full Idea: What I mean by 'propositions' is not what the grammarians call a proposition, namely the linguistic expression, but the mere sense of this expression, is what is meant by proposition in itself or object proposition. This sense can be true or false.
     From: Bernard Bolzano (Theory of Science (Wissenschaftslehre, 4 vols) [1837], Pref?)
     A reaction: This seems to be the origin of what we understand by 'proposition'. The disputes are over whether such things exists, and whether they are features of minds or features of the world (resembling facts).
19. Language / E. Analyticity / 2. Analytic Truths
The ground of a pure conceptual truth is only in other conceptual truths [Bolzano]
     Full Idea: We can find the ground of a pure conceptual truth only in other conceptual truths.
     From: Bernard Bolzano (Theory of Science (Wissenschaftslehre, 4 vols) [1837], Pref)
     A reaction: Elsewhere he insists that these grounds must be in 'truths', and not just in the attributes of the concepts of involved. This conflicts with Kit Fine's view, that the concepts themselves are the source of conceptual truth and necessity.
26. Natural Theory / C. Causation / 8. Particular Causation / e. Probabilistic causation
A cause won't increase the effect frequency if other causes keep interfering [Cartwright,N]
     Full Idea: A cause ought to increase the frequency of the effect, but this fact may not show up in the probabilities if other causes are at work.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 1.1)
     A reaction: [She cites Patrick Suppes for this one] Presumably in experimental situations you can weed out the interference, but that threatens to eliminate mere 'probability' entirely.
26. Natural Theory / D. Laws of Nature / 2. Types of Laws
There are fundamental explanatory laws (false!), and phenomenological laws (regularities) [Cartwright,N, by Bird]
     Full Idea: Nancy Cartwright distinguishes between 'fundamental explanatory laws', which we should not believe, and 'phenomenological laws', which are regularities established on the basis of observation.
     From: report of Nancy Cartwright (How the Laws of Physics Lie [1983]) by Alexander Bird - Philosophy of Science Ch.4
     A reaction: The distinction is helpful, so that we can be clearer about what everyone is claiming. We can probably all agree on the phenomenological laws, which are epistemological. Personally I claim truth for the best fundamental explanatory laws.
Laws of appearances are 'phenomenological'; laws of reality are 'theoretical' [Cartwright,N]
     Full Idea: Philosophers distinguish phenomenological from theoretical laws. Phenomenological laws are about appearances; theoretical ones are about the reality behind the appearances.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: I'm suspecting that Humeans only really believe in the phenomenological kind. I'm only interested in the theoretical kind, and I take inference to the best explanation to be the bridge between the two. Cartwright rejects the theoretical laws.
26. Natural Theory / D. Laws of Nature / 4. Regularities / b. Best system theory
Good organisation may not be true, and the truth may not organise very much [Cartwright,N]
     Full Idea: There is no reason to think that the principles that best organise will be true, nor that the principles that are true will organise much.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 2.5)
     A reaction: This is aimed at the Mill-Ramsey-Lewis account of laws, as axiomatisations of the observed patterns in nature.
26. Natural Theory / D. Laws of Nature / 11. Against Laws of Nature
There are few laws for when one theory meets another [Cartwright,N]
     Full Idea: Where theories intersect, laws are usually hard to come by.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 2.3)
     A reaction: There are attempts at so-called 'bridge laws', to get from complex theories to simple ones, but her point is well made about theories on the same 'level'.
To get from facts to equations, we need a prepared descriptions suited to mathematics [Cartwright,N]
     Full Idea: To get from a detailed factual knowledge of a situation to an equation, we must prepare the description of the situation to meet the mathematical needs of the theory.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: She is clearly on to something here, as Galileo is blatantly wrong in his claim that the book of nature is written in mathematics. Mathematics is the best we can manage in getting a grip on the chaos.
Simple laws have quite different outcomes when they act in combinations [Cartwright,N]
     Full Idea: For explanation simple laws must have the same form when they act together as when they act singly. ..But then what the law states cannot literally be true, for the consequences that occur if it acts alone are not what occurs when they act in combination.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 3.6)
     A reaction: This is Cartwright's basic thesis. Her point is that the laws 'lie', because they claim to predict a particular outcome which never ever actually occurs. She says we could know all the laws, and still not be able to explain anything.