Combining Texts

All the ideas for 'How the Laws of Physics Lie', 'Truth (2nd edn)' and 'The Runabout Inference Ticket'

unexpand these ideas     |    start again     |     specify just one area for these texts


33 ideas

3. Truth / A. Truth Problems / 1. Truth
The function of the truth predicate? Understanding 'true'? Meaning of 'true'? The concept of truth? A theory of truth? [Horwich]
     Full Idea: We must distinguish the function of the truth predicate, what it is to understand 'true', the meaning of 'true', grasping the concept of truth, and a theory of truth itself.
     From: Paul Horwich (Truth (2nd edn) [1990], Ch.2.8)
     A reaction: It makes you feel tired to think about it. Presumably every other philosophical analysis has to do this many jobs. Clearly Horwich wants to propose one account which will do all five jobs. Personally I don't believe these five are really distinct.
3. Truth / C. Correspondence Truth / 1. Correspondence Truth
Some correspondence theories concern facts; others are built up through reference and satisfaction [Horwich]
     Full Idea: One correspondence theory (e.g. early Wittgenstein) concerns representations and facts; alternatively (Tarski, Davidson) the category of fact is eschewed, and the truth of sentences or propositions is built out of relations of reference and satisfaction.
     From: Paul Horwich (Truth (2nd edn) [1990], Ch.7.35)
     A reaction: A helpful distinction. Clearly the notion of a 'fact' is an elusive one ("how many facts are there in this room?"), so it seems quite promising to say that the parts of the sentence correspond, rather than the whole thing.
3. Truth / C. Correspondence Truth / 3. Correspondence Truth critique
The common-sense theory of correspondence has never been worked out satisfactorily [Horwich]
     Full Idea: The common-sense notion that truth is a kind of 'correspondence with the facts' has never been worked out to anyone's satisfaction.
     From: Paul Horwich (Truth (2nd edn) [1990], Ch.1)
     A reaction: I've put this in to criticise it. Philosophy can't work by rejecting theories which can't be 'worked out', and accepting theories (like Tarski's) because they can be 'worked out'. All our theories will end up minimal, and defiant of common sense.
3. Truth / H. Deflationary Truth / 1. Redundant Truth
The redundancy theory cannot explain inferences from 'what x said is true' and 'x said p', to p [Horwich]
     Full Idea: The redundancy theory is unable to account for the inference from "Oscar's claim is true" and "Oscar's claim is that snow is white" to "the proposition 'that snow is white' is true", and hence to "snow is white".
     From: Paul Horwich (Truth (2nd edn) [1990], Ch.2.9)
     A reaction: Earlier objections appealed to the fact that the word 'true' seemed to have a use in ordinary speech, but this seems a much stronger one. In general, showing the role of a term in making inferences pins it down better than ordinary speech does.
3. Truth / H. Deflationary Truth / 2. Deflationary Truth
Truth is a useful concept for unarticulated propositions and generalisations about them [Horwich]
     Full Idea: All uses of the truth predicate are explained by the hypothesis that its entire raison d'ętre is to help us say things about unarticulated propositions, and in particular to express generalisations about them.
     From: Paul Horwich (Truth (2nd edn) [1990], Concl)
     A reaction: This certain is a very deflationary notion of truth. Articulated propositions are considered to stand on their own two feet, without need of 'is true'. He makes truth sound like a language game, though. Personally I prefer to mention reality.
No deflationary conception of truth does justice to the fact that we aim for truth [Horwich]
     Full Idea: It has been suggested that no deflationary conception of truth could do justice to the fact that we aim for the truth.
     From: Paul Horwich (Truth (2nd edn) [1990], Ch.2.11)
     A reaction: (He mentions Dummett and Wright). People don't only aim for it - they become very idealistic about it, and sometimes die for it. Personally I think that any study of truth should use as its example police investigations, not philosophical analysis.
Horwich's deflationary view is novel, because it relies on propositions rather than sentences [Horwich, by Davidson]
     Full Idea: Horwich's brave and striking move is to make the primary bearers of truth propositions - not exactly a new idea in itself, but new in the context of a serious attempt to defend deflationism.
     From: report of Paul Horwich (Truth (2nd edn) [1990]) by Donald Davidson - The Folly of Trying to Define Truth p.30
     A reaction: Davidson rejects propositions because they can't be individuated, but I totally accept propositions. I'm puzzled why this would produce a deflationist theory, since I think it points to a much more robust view.
The deflationary picture says believing a theory true is a trivial step after believing the theory [Horwich]
     Full Idea: According to the deflationary picture, believing that a theory is true is a trivial step beyond believing the theory.
     From: Paul Horwich (Truth (2nd edn) [1990], Ch.2.17)
     A reaction: What has gone wrong with this picture is that you cannot (it seems to me) give a decent account of belief without mentioning truth. To believe a proposition is to hold it true. Hume's emotional account (Idea 2208) makes belief bewildering.
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Logical form is the aspects of meaning that determine logical entailments [Horwich]
     Full Idea: The logical forms of the sentences in a language are those aspects of their meanings that determine the relations of deductive entailment holding amongst them.
     From: Paul Horwich (Truth (2nd edn) [1990], Ch.6.30)
     A reaction: A helpful definition. Not all sentences, therefore, need to have a 'logical form'. Is the logical form the same as the underlying proposition. The two must converge, given that propositions lack the ambiguity that is often found in sentences.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Prior rejected accounts of logical connectives by inference pattern, with 'tonk' his absurd example [Prior,AN, by Read]
     Full Idea: Prior dislike the holism inherent in the claim that the meaning of a logical connective was determined by the inference patterns into which it validly fitted. ...His notorious example of 'tonk' (A → A-tonk-B → B) was a reductio of the view.
     From: report of Arthur N. Prior (The Runabout Inference Ticket [1960]) by Stephen Read - Thinking About Logic Ch.8
     A reaction: [The view being attacked was attributed to Gentzen]
Maybe introducing or defining logical connectives by rules of inference leads to absurdity [Prior,AN, by Hacking]
     Full Idea: Prior intended 'tonk' (a connective which leads to absurdity) as a criticism of the very idea of introducing or defining logical connectives by rules of inference.
     From: report of Arthur N. Prior (The Runabout Inference Ticket [1960], §09) by Ian Hacking - What is Logic?
We need to know the meaning of 'and', prior to its role in reasoning [Prior,AN, by Belnap]
     Full Idea: For Prior, so the moral goes, we must first have a notion of what 'and' means, independently of the role it plays as premise and as conclusion.
     From: report of Arthur N. Prior (The Runabout Inference Ticket [1960]) by Nuel D. Belnap - Tonk, Plonk and Plink p.132
     A reaction: The meaning would be given by the truth tables (the truth-conditions), whereas the role would be given by the natural deduction introduction and elimination rules. This seems to be the basic debate about logical connectives.
Prior's 'tonk' is inconsistent, since it allows the non-conservative inference A |- B [Belnap on Prior,AN]
     Full Idea: Prior's definition of 'tonk' is inconsistent. It gives us an extension of our original characterisation of deducibility which is not conservative, since in the extension (but not the original) we have, for arbitrary A and B, A |- B.
     From: comment on Arthur N. Prior (The Runabout Inference Ticket [1960]) by Nuel D. Belnap - Tonk, Plonk and Plink p.135
     A reaction: Belnap's idea is that connectives don't just rest on their rules, but also on the going concern of normal deduction.
7. Existence / E. Categories / 4. Category Realism
Causality indicates which properties are real [Cartwright,N]
     Full Idea: Causality is a clue to what properties are real.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 9.3)
     A reaction: An interesting variant on the Shoemaker proposal that properties actually are causal. I'm not sure that there is anything more to causality that the expression in action of properties, which I take to be powers. Structures are not properties.
14. Science / D. Explanation / 2. Types of Explanation / a. Types of explanation
Two main types of explanation are by causes, or by citing a theoretical framework [Cartwright,N]
     Full Idea: In explaining a phenomenon one can cite the causes of that phenomenon; or one can set the phenomenon in a general theoretical framework.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 4.1)
     A reaction: The thing is, you need to root an explanation in something taken as basic, and theoretical frameworks need further explanation, whereas causes seem to be basic.
14. Science / D. Explanation / 2. Types of Explanation / c. Explanations by coherence
An explanation is a model that fits a theory and predicts the phenomenological laws [Cartwright,N]
     Full Idea: To explain a phenomenon is to find a model that fits it into the basic framework of the theory and that thus allows us to derive analogues for the messy and complicated phenomenological laws that are true of it.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 8.3)
     A reaction: This summarises the core of her view in this book. She is after models rather than laws, and the models are based on causes.
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
Laws get the facts wrong, and explanation rests on improvements and qualifications of laws [Cartwright,N]
     Full Idea: We explain by ceteris paribus laws, by composition of causes, and by approximations that improve on what the fundamental laws dictate. In all of these cases the fundamental laws patently do not get the facts right.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: It is rather headline-grabbing to say in this case that laws do not get the facts right. If they were actually 'wrong' and 'lied', there wouldn't be much point in building explanations on them.
Laws apply to separate domains, but real explanations apply to intersecting domains [Cartwright,N]
     Full Idea: When different kinds of causes compose, we want to explain what happens in the intersection of different domains. But the laws we use are designed only to tell truly what happens in each domain separately.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: Since presumably the laws are discovered through experiments which try to separate out a single domain, in those circumstances they actually are true, so they don't 'lie'.
Covering-law explanation lets us explain storms by falling barometers [Cartwright,N]
     Full Idea: Much criticism of the original covering-law model objects that it lets in too much. It seems we can explain Henry's failure to get pregnant by his taking birth control pills, and we can explain the storm by the falling barometer.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 2.0)
     A reaction: I take these examples to show that true explanations must be largely causal in character. The physicality of causation is what matters, not 'laws'. I'd say the same of attempts to account for causation through counterfactuals.
I disagree with the covering-law view that there is a law to cover every single case [Cartwright,N]
     Full Idea: Covering-law theorists tend to think that nature is well-regulated; in the extreme, that there is a law to cover every case. I do not.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 2.2)
     A reaction: The problem of coincidence is somewhere at the back of this thought. Innumerable events have their own explanations, but it is hard to explain their coincidence (see Aristotle's case of bumping into a friend in the market).
You can't explain one quail's behaviour by just saying that all quails do it [Cartwright,N]
     Full Idea: 'Why does that quail in the garden bob its head up and down in that funny way whenever it walks?' …'Because they all do'.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 3.5)
     A reaction: She cites this as an old complaint against the covering-law model of explanation. It captures beautifully the basic error of the approach. We want to know 'why', rather than just have a description of the pattern. 'They all do' is useful information.
The covering law view assumes that each phenomenon has a 'right' explanation [Cartwright,N]
     Full Idea: The covering-law account supposes that there is, in principle, one 'right' explanation for each phenomenon.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: Presumably the law is held to be 'right', but there must be a bit of flexibility in describing the initial conditions, and the explanandum itself.
14. Science / D. Explanation / 3. Best Explanation / c. Against best explanation
In science, best explanations have regularly turned out to be false [Cartwright,N]
     Full Idea: There are a huge number of cases in the history of science where we now know our best explanations were false.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 5.3)
     A reaction: [She cites Laudan 1981 for this] The Ptolemaic system and aether are the standard example cited for this. I believe strongly in the importance of best explanation. Only a fool would just accept the best explanation available. Coherence is needed.
19. Language / A. Nature of Meaning / 4. Meaning as Truth-Conditions
We could know the truth-conditions of a foreign sentence without knowing its meaning [Horwich]
     Full Idea: Someone who does not understand German and is told 'Schnee ist weiss' is true if frozen H2O is white, does not understand the German sentence, even though he knows the truth-conditions.
     From: Paul Horwich (Truth (2nd edn) [1990], Ch.5.22 n1)
     A reaction: This sounds like a powerful objection to Davidson's well-known claim that meaning is truth-conditions. Horwich likes the idea that meaning is use, but I think a similar objection arises - you can use a sentence well without knowing its meaning.
19. Language / D. Propositions / 1. Propositions
There are Fregean de dicto propositions, and Russellian de re propositions, or a mixture [Horwich]
     Full Idea: There are pure, Fregean, abstract, de dicto propositions, in which a compositional structure is filled only with senses; there are pure, Russellian, concrete, de re propositions, which are filled with referents; and there are mixed propositions.
     From: Paul Horwich (Truth (2nd edn) [1990], Ch.6.31)
     A reaction: Once Frege has distinguished sense from reference, this distinction of propositions is likely to follow. The current debate over the internalist and externalist accounts of concepts seems to continue the debate. A mixed strategy sounds good.
19. Language / F. Communication / 6. Interpreting Language / b. Indeterminate translation
Right translation is a mapping of languages which preserves basic patterns of usage [Horwich]
     Full Idea: The right translation between words of two languages is the mapping that preserves basic patterns of usage - where usage is characterised non-semantically, in terms of circumstances of application, assertibility conditions and inferential role.
     From: Paul Horwich (Truth (2nd edn) [1990], Ch.6.32)
     A reaction: It still strikes me that if you ask why a piece of language is used in a certain way, you find yourself facing something deeper about meaning than mere usage. Horwich cites Wittgenstein and Quine in his support. Could a machine pass his test?
26. Natural Theory / C. Causation / 8. Particular Causation / e. Probabilistic causation
A cause won't increase the effect frequency if other causes keep interfering [Cartwright,N]
     Full Idea: A cause ought to increase the frequency of the effect, but this fact may not show up in the probabilities if other causes are at work.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 1.1)
     A reaction: [She cites Patrick Suppes for this one] Presumably in experimental situations you can weed out the interference, but that threatens to eliminate mere 'probability' entirely.
26. Natural Theory / D. Laws of Nature / 2. Types of Laws
There are fundamental explanatory laws (false!), and phenomenological laws (regularities) [Cartwright,N, by Bird]
     Full Idea: Nancy Cartwright distinguishes between 'fundamental explanatory laws', which we should not believe, and 'phenomenological laws', which are regularities established on the basis of observation.
     From: report of Nancy Cartwright (How the Laws of Physics Lie [1983]) by Alexander Bird - Philosophy of Science Ch.4
     A reaction: The distinction is helpful, so that we can be clearer about what everyone is claiming. We can probably all agree on the phenomenological laws, which are epistemological. Personally I claim truth for the best fundamental explanatory laws.
Laws of appearances are 'phenomenological'; laws of reality are 'theoretical' [Cartwright,N]
     Full Idea: Philosophers distinguish phenomenological from theoretical laws. Phenomenological laws are about appearances; theoretical ones are about the reality behind the appearances.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: I'm suspecting that Humeans only really believe in the phenomenological kind. I'm only interested in the theoretical kind, and I take inference to the best explanation to be the bridge between the two. Cartwright rejects the theoretical laws.
26. Natural Theory / D. Laws of Nature / 4. Regularities / b. Best system theory
Good organisation may not be true, and the truth may not organise very much [Cartwright,N]
     Full Idea: There is no reason to think that the principles that best organise will be true, nor that the principles that are true will organise much.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 2.5)
     A reaction: This is aimed at the Mill-Ramsey-Lewis account of laws, as axiomatisations of the observed patterns in nature.
26. Natural Theory / D. Laws of Nature / 11. Against Laws of Nature
To get from facts to equations, we need a prepared descriptions suited to mathematics [Cartwright,N]
     Full Idea: To get from a detailed factual knowledge of a situation to an equation, we must prepare the description of the situation to meet the mathematical needs of the theory.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: She is clearly on to something here, as Galileo is blatantly wrong in his claim that the book of nature is written in mathematics. Mathematics is the best we can manage in getting a grip on the chaos.
Simple laws have quite different outcomes when they act in combinations [Cartwright,N]
     Full Idea: For explanation simple laws must have the same form when they act together as when they act singly. ..But then what the law states cannot literally be true, for the consequences that occur if it acts alone are not what occurs when they act in combination.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 3.6)
     A reaction: This is Cartwright's basic thesis. Her point is that the laws 'lie', because they claim to predict a particular outcome which never ever actually occurs. She says we could know all the laws, and still not be able to explain anything.
There are few laws for when one theory meets another [Cartwright,N]
     Full Idea: Where theories intersect, laws are usually hard to come by.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 2.3)
     A reaction: There are attempts at so-called 'bridge laws', to get from complex theories to simple ones, but her point is well made about theories on the same 'level'.