Combining Texts

All the ideas for 'How the Laws of Physics Lie', 'Letter to Clerk Maxwell' and 'Logical Necessity'

unexpand these ideas     |    start again     |     specify just one area for these texts


29 ideas

4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
The logic of metaphysical necessity is S5 [Rumfitt]
     Full Idea: It is a widely accepted thesis that the logic of metaphysical necessity is S5.
     From: Ian Rumfitt (Logical Necessity [2010], §5)
     A reaction: Rumfitt goes on to defend this standard view (against Dummett's defence of S4). The point, I take it, is that one can only assert that something is 'true in all possible worlds' only when the worlds are all accessible to one another.
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Soundness in argument varies with context, and may be achieved very informally indeed [Rumfitt]
     Full Idea: Our ordinary standards for deeming arguments to be sound vary greatly from context to context. Even the package tourist's syllogism ('It's Tuesday, so this is Belgium') may meet the operative standards for soundness.
     From: Ian Rumfitt (Logical Necessity [2010], Intro)
     A reaction: No doubt one could spell out the preconceptions of package tourist reasoning, and arrive at the logical form of the implication which is being offered.
There is a modal element in consequence, in assessing reasoning from suppositions [Rumfitt]
     Full Idea: There is a modal element in consequence, in its applicability to assessing reasoning from suppositions.
     From: Ian Rumfitt (Logical Necessity [2010], §2)
We reject deductions by bad consequence, so logical consequence can't be deduction [Rumfitt]
     Full Idea: A rule is to be rejected if it enables us to deduce from some premisses a purported conclusion that does not follow from them in the broad sense. The idea that deductions answer to consequence is incomprehensible if consequence consists in deducibility.
     From: Ian Rumfitt (Logical Necessity [2010], §2)
5. Theory of Logic / D. Assumptions for Logic / 3. Contradiction
Contradictions include 'This is red and not coloured', as well as the formal 'B and not-B' [Rumfitt]
     Full Idea: Overt contradictions include formal contradictions of form 'B and not B', but I also take them to include 'This is red all over and green all over' and 'This is red and not coloured'.
     From: Ian Rumfitt (Logical Necessity [2010], Intro)
5. Theory of Logic / H. Proof Systems / 2. Axiomatic Proof
Geometrical axioms in logic are nowadays replaced by inference rules (which imply the logical truths) [Rumfitt]
     Full Idea: The geometrical style of formalization of logic is now little more than a quaint anachronism, largely because it fails to show logical truths for what they are: simply by-products of rules of inference that are applicable to suppositions.
     From: Ian Rumfitt (Logical Necessity [2010], §1)
     A reaction: This is the rejection of Russell-style axiom systems in favour of Gentzen-style natural deduction systems (starting from rules). Rumfitt quotes Dummett in support.
7. Existence / E. Categories / 4. Category Realism
Causality indicates which properties are real [Cartwright,N]
     Full Idea: Causality is a clue to what properties are real.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 9.3)
     A reaction: An interesting variant on the Shoemaker proposal that properties actually are causal. I'm not sure that there is anything more to causality that the expression in action of properties, which I take to be powers. Structures are not properties.
10. Modality / A. Necessity / 3. Types of Necessity
A distinctive type of necessity is found in logical consequence [Rumfitt, by Hale/Hoffmann,A]
     Full Idea: Rumfitt argues that there is a distinctive notion of necessity implicated in the notion of logical consequence.
     From: report of Ian Rumfitt (Logical Necessity [2010]) by Bob Hale/ Aviv Hoffmann - Introduction to 'Modality' 2
10. Modality / A. Necessity / 6. Logical Necessity
A logically necessary statement need not be a priori, as it could be unknowable [Rumfitt]
     Full Idea: There is no reason to suppose that any statement that is logically necessary (in the present sense) is knowable a priori. ..If a statement is logically necessary, its negation will yield a contradiction, but that does not imply that someone could know it.
     From: Ian Rumfitt (Logical Necessity [2010], §2)
     A reaction: This remark is aimed at Dorothy Edgington, who holds the opposite view. Rumfitt largely defends McFetridge's view (q.v.).
Logical necessity is when 'necessarily A' implies 'not-A is contradictory' [Rumfitt]
     Full Idea: By the notion of 'logical necessity' I mean that there is a sense of 'necessary' for which 'It is necessary that A' implies and is implied by 'It is logically contradictory that not A'. ...From this, logical necessity is implicated in logical consequence.
     From: Ian Rumfitt (Logical Necessity [2010], Intro)
     A reaction: Rumfitt expresses a commitment to classical logic at this point. We will need to be quite sure what we mean by 'contradiction', which will need a clear notion of 'truth'....
Narrow non-modal logical necessity may be metaphysical, but real logical necessity is not [Rumfitt]
     Full Idea: While Fine suggests defining a narrow notion of logical necessity in terms of metaphysical necessity by 'restriction' (to logical truths that can be defined in non-modal terms), this seems unpromising for broad logical necessity, which is modal.
     From: Ian Rumfitt (Logical Necessity [2010], §2)
     A reaction: [compressed] He cites Kit Fine 2002. Rumfitt glosses the non-modal definitions as purely formal. The metaphysics lurks somewhere in the proof.
10. Modality / E. Possible worlds / 1. Possible Worlds / e. Against possible worlds
If a world is a fully determinate way things could have been, can anyone consider such a thing? [Rumfitt]
     Full Idea: A world is usually taken to be a fully determinate way that things could have been; but then one might seriously wonder whether anyone is capable of 'considering' such a thing at all.
     From: Ian Rumfitt (Logical Necessity [2010], §4)
     A reaction: This has always worried me. If I say 'maybe my coat is in the car', I would hate to think that I had to be contemplating some entire possible world (including all the implications of my coat not being on the hat stand).
14. Science / D. Explanation / 2. Types of Explanation / a. Types of explanation
Two main types of explanation are by causes, or by citing a theoretical framework [Cartwright,N]
     Full Idea: In explaining a phenomenon one can cite the causes of that phenomenon; or one can set the phenomenon in a general theoretical framework.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 4.1)
     A reaction: The thing is, you need to root an explanation in something taken as basic, and theoretical frameworks need further explanation, whereas causes seem to be basic.
14. Science / D. Explanation / 2. Types of Explanation / c. Explanations by coherence
An explanation is a model that fits a theory and predicts the phenomenological laws [Cartwright,N]
     Full Idea: To explain a phenomenon is to find a model that fits it into the basic framework of the theory and that thus allows us to derive analogues for the messy and complicated phenomenological laws that are true of it.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 8.3)
     A reaction: This summarises the core of her view in this book. She is after models rather than laws, and the models are based on causes.
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
The covering law view assumes that each phenomenon has a 'right' explanation [Cartwright,N]
     Full Idea: The covering-law account supposes that there is, in principle, one 'right' explanation for each phenomenon.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: Presumably the law is held to be 'right', but there must be a bit of flexibility in describing the initial conditions, and the explanandum itself.
Laws get the facts wrong, and explanation rests on improvements and qualifications of laws [Cartwright,N]
     Full Idea: We explain by ceteris paribus laws, by composition of causes, and by approximations that improve on what the fundamental laws dictate. In all of these cases the fundamental laws patently do not get the facts right.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: It is rather headline-grabbing to say in this case that laws do not get the facts right. If they were actually 'wrong' and 'lied', there wouldn't be much point in building explanations on them.
Laws apply to separate domains, but real explanations apply to intersecting domains [Cartwright,N]
     Full Idea: When different kinds of causes compose, we want to explain what happens in the intersection of different domains. But the laws we use are designed only to tell truly what happens in each domain separately.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: Since presumably the laws are discovered through experiments which try to separate out a single domain, in those circumstances they actually are true, so they don't 'lie'.
Covering-law explanation lets us explain storms by falling barometers [Cartwright,N]
     Full Idea: Much criticism of the original covering-law model objects that it lets in too much. It seems we can explain Henry's failure to get pregnant by his taking birth control pills, and we can explain the storm by the falling barometer.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 2.0)
     A reaction: I take these examples to show that true explanations must be largely causal in character. The physicality of causation is what matters, not 'laws'. I'd say the same of attempts to account for causation through counterfactuals.
I disagree with the covering-law view that there is a law to cover every single case [Cartwright,N]
     Full Idea: Covering-law theorists tend to think that nature is well-regulated; in the extreme, that there is a law to cover every case. I do not.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 2.2)
     A reaction: The problem of coincidence is somewhere at the back of this thought. Innumerable events have their own explanations, but it is hard to explain their coincidence (see Aristotle's case of bumping into a friend in the market).
You can't explain one quail's behaviour by just saying that all quails do it [Cartwright,N]
     Full Idea: 'Why does that quail in the garden bob its head up and down in that funny way whenever it walks?' …'Because they all do'.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 3.5)
     A reaction: She cites this as an old complaint against the covering-law model of explanation. It captures beautifully the basic error of the approach. We want to know 'why', rather than just have a description of the pattern. 'They all do' is useful information.
14. Science / D. Explanation / 3. Best Explanation / c. Against best explanation
In science, best explanations have regularly turned out to be false [Cartwright,N]
     Full Idea: There are a huge number of cases in the history of science where we now know our best explanations were false.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 5.3)
     A reaction: [She cites Laudan 1981 for this] The Ptolemaic system and aether are the standard example cited for this. I believe strongly in the importance of best explanation. Only a fool would just accept the best explanation available. Coherence is needed.
26. Natural Theory / C. Causation / 8. Particular Causation / e. Probabilistic causation
A cause won't increase the effect frequency if other causes keep interfering [Cartwright,N]
     Full Idea: A cause ought to increase the frequency of the effect, but this fact may not show up in the probabilities if other causes are at work.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 1.1)
     A reaction: [She cites Patrick Suppes for this one] Presumably in experimental situations you can weed out the interference, but that threatens to eliminate mere 'probability' entirely.
26. Natural Theory / D. Laws of Nature / 2. Types of Laws
There are fundamental explanatory laws (false!), and phenomenological laws (regularities) [Cartwright,N, by Bird]
     Full Idea: Nancy Cartwright distinguishes between 'fundamental explanatory laws', which we should not believe, and 'phenomenological laws', which are regularities established on the basis of observation.
     From: report of Nancy Cartwright (How the Laws of Physics Lie [1983]) by Alexander Bird - Philosophy of Science Ch.4
     A reaction: The distinction is helpful, so that we can be clearer about what everyone is claiming. We can probably all agree on the phenomenological laws, which are epistemological. Personally I claim truth for the best fundamental explanatory laws.
Laws of appearances are 'phenomenological'; laws of reality are 'theoretical' [Cartwright,N]
     Full Idea: Philosophers distinguish phenomenological from theoretical laws. Phenomenological laws are about appearances; theoretical ones are about the reality behind the appearances.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: I'm suspecting that Humeans only really believe in the phenomenological kind. I'm only interested in the theoretical kind, and I take inference to the best explanation to be the bridge between the two. Cartwright rejects the theoretical laws.
26. Natural Theory / D. Laws of Nature / 4. Regularities / b. Best system theory
Good organisation may not be true, and the truth may not organise very much [Cartwright,N]
     Full Idea: There is no reason to think that the principles that best organise will be true, nor that the principles that are true will organise much.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 2.5)
     A reaction: This is aimed at the Mill-Ramsey-Lewis account of laws, as axiomatisations of the observed patterns in nature.
26. Natural Theory / D. Laws of Nature / 11. Against Laws of Nature
There are few laws for when one theory meets another [Cartwright,N]
     Full Idea: Where theories intersect, laws are usually hard to come by.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 2.3)
     A reaction: There are attempts at so-called 'bridge laws', to get from complex theories to simple ones, but her point is well made about theories on the same 'level'.
To get from facts to equations, we need a prepared descriptions suited to mathematics [Cartwright,N]
     Full Idea: To get from a detailed factual knowledge of a situation to an equation, we must prepare the description of the situation to meet the mathematical needs of the theory.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], Intro)
     A reaction: She is clearly on to something here, as Galileo is blatantly wrong in his claim that the book of nature is written in mathematics. Mathematics is the best we can manage in getting a grip on the chaos.
Simple laws have quite different outcomes when they act in combinations [Cartwright,N]
     Full Idea: For explanation simple laws must have the same form when they act together as when they act singly. ..But then what the law states cannot literally be true, for the consequences that occur if it acts alone are not what occurs when they act in combination.
     From: Nancy Cartwright (How the Laws of Physics Lie [1983], 3.6)
     A reaction: This is Cartwright's basic thesis. Her point is that the laws 'lie', because they claim to predict a particular outcome which never ever actually occurs. She says we could know all the laws, and still not be able to explain anything.
27. Natural Reality / A. Classical Physics / 1. Mechanics / c. Forces
By 'force' I mean the sources of all actions - sometimes called 'powers' by their outcomes [Breheny]
     Full Idea: I mean by the word 'force' the source or sources of all possible actions of the particles or materials of the universe: these being often called the powers of nature when spoken of in relation to the different manners in which their effects are shown.
     From: Richard Breheny (Letter to Clerk Maxwell [1855]), quoted by Harré,R./Madden,E.H. - Causal Powers 9.II.B
     A reaction: He uses 'force' for what is fundamental, and 'powers' for their results. I am inclining to talk of 'fundamental powers' and 'complex powers', leaving the word 'force' to the physicists.