Combining Texts

All the ideas for 'Chomsky on himself', 'Cantorian Abstraction: Recon. and Defence' and 'On the Question of Absolute Undecidability'

unexpand these ideas     |    start again     |     specify just one area for these texts


12 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
I think of variables as objects rather than as signs [Fine,K]
     Full Idea: It is natural nowadays to think of variables as a certain kind of sign, but I wish to think of them as a certain kind of object.
     From: Kit Fine (Cantorian Abstraction: Recon. and Defence [1998], §2)
     A reaction: Fine has a theory based on 'arbitrary objects', which is a rather charming idea. The cell of a spreadsheet is a kind of object, I suppose. A variable might be analogous to a point in space, where objects can locate themselves.
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
If green is abstracted from a thing, it is only seen as a type if it is common to many things [Fine,K]
     Full Idea: In traditional abstraction, the colour green merely has the intrinsic property of being green, other properties of things being abstracted away. But why should that be regarded as a type? It must be because the property is common to the instances.
     From: Kit Fine (Cantorian Abstraction: Recon. and Defence [1998], §5)
     A reaction: A nice question which shows that the much-derided single act of abstraction is not sufficient to arrive at a concept, so that abstraction is a more complex matter (perhaps even a rational one) than simple empiricists believe.
18. Thought / D. Concepts / 2. Origin of Concepts / c. Nativist concepts
Chomsky now says concepts are basically innate, as well as syntax [Chomsky, by Lowe]
     Full Idea: Chomsky now contends that not only the syntax of natural language but also the concepts expressible in it have an innate basis.
     From: report of Noam Chomsky (Chomsky on himself [1994]) by E.J. Lowe - Introduction to the Philosophy of Mind Ch.7 n25
     A reaction: This seems to follow Fodor, who has been mocked for implying that we have an innate idea of a screwdriver etc. Note that Chomsky says concepts have an innate 'basis'. This fits well with modern (cautious) rationalism, with which I am happy.
18. Thought / E. Abstraction / 2. Abstracta by Selection
To obtain the number 2 by abstraction, we only want to abstract the distinctness of a pair of objects [Fine,K]
     Full Idea: In abstracting from the elements of a doubleton to obtain 2, we do not wish to abstract away from all features of the objects. We wish to take account of the fact that the two objects are distinct; this alone should be preserved under abstraction.
     From: Kit Fine (Cantorian Abstraction: Recon. and Defence [1998], §3)
     A reaction: This is Fine's strategy for meeting Frege's objection to abstraction, summarised in Idea 9146. It seems to use the common sense idea that abstraction is not all-or-nothing. Abstraction has degrees (and levels).
We should define abstraction in general, with number abstraction taken as a special case [Fine,K]
     Full Idea: Number abstraction can be taken to be a special case of abstraction in general, which can then be defined without recourse to the concept of number.
     From: Kit Fine (Cantorian Abstraction: Recon. and Defence [1998], §3)
     A reaction: At last, a mathematical logician recognising that they don't have a monopoly on abstraction. It is perfectly obvious that abstractions of simple daily concepts must be chronologically and logically prior to number abstraction. Number of what?
18. Thought / E. Abstraction / 8. Abstractionism Critique
After abstraction all numbers seem identical, so only 0 and 1 will exist! [Fine,K]
     Full Idea: In Cantor's abstractionist account there can only be two numbers, 0 and 1. For abs(Socrates) = abs(Plato), since their numbers are the same. So the number of {Socrates,Plato} is {abs(Soc),abs(Plato)}, which is the same number as {Socrates}!
     From: Kit Fine (Cantorian Abstraction: Recon. and Defence [1998], §1)
     A reaction: Fine tries to answer this objection, which arises from §45 of Frege's Grundlagen. Fine summarises that "indistinguishability without identity appears to be impossible". Maybe we should drop talk of numbers in terms of sets.