Combining Texts

All the ideas for 'General Draft', 'Proslogion' and 'The Periodic Table'

unexpand these ideas     |    start again     |     specify just one area for these texts


39 ideas

1. Philosophy / D. Nature of Philosophy / 5. Aims of Philosophy / a. Philosophy as worldly
Philosophy is homesickness - the urge to be at home everywhere [Novalis]
     Full Idea: Philosophy is actually homesickness - the urge to be everywhere at home.
     From: Novalis (General Draft [1799], 45)
     A reaction: The idea of home [heimat] is powerful in German culture. The point of romanticism was seen as largely concerning restless souls like Byron and his heroes, who do not feel at home. Hence ironic detachment.
14. Science / A. Basis of Science / 4. Prediction
If a theory can be fudged, so can observations [Scerri]
     Full Idea: A theorist may have designed his theory to fit the facts, but is it not equally possible for observers to be influenced by a theory in their report of experimental facts?
     From: Eric R. Scerri (The Periodic Table [2007], 05 'Power')
     A reaction: This is in reply to Lipton's claim that prediction is better than accommodation because of the 'fudging' problem. The reply is that you might fudge to achieve a prediction. If it was correct, that wouldn't avoid the charge of fudging.
14. Science / B. Scientific Theories / 4. Paradigm
The periodic system is the big counterexample to Kuhn's theory of revolutionary science [Scerri]
     Full Idea: The history of the periodic system appears to be the supreme counterexample to Kuhn's thesis, whereby scientific developments proceed in a sudden, revolutionary fashion.
     From: Eric R. Scerri (The Periodic Table [2007], 03 'Rapid')
     A reaction: What is lovely about the periodic table is that it seems so wonderfully right, and hence no revolution has ever been needed. The big theories of physics and cosmology are much more precarious.
14. Science / D. Explanation / 1. Explanation / b. Aims of explanation
Scientists eventually seek underlying explanations for every pattern [Scerri]
     Full Idea: Whenever scientists are presented with a useful pattern or system of classification, it is only a matter of time before the begin to ask whether there may be some underlying explanation for the pattern.
     From: Eric R. Scerri (The Periodic Table [2007], Intro 'Evol')
     A reaction: Music to my ears, against the idea that the sole aim of science is accurately describe the patterns.
14. Science / D. Explanation / 3. Best Explanation / a. Best explanation
The periodic table suggests accommodation to facts rates above prediction [Scerri]
     Full Idea: Rather than proving the value of prediction, the development and acceptance of the periodic table may give us a powerful illustration of the importance of accommodation, that is, the ability of a new scientific theory to explain already known facts.
     From: Eric R. Scerri (The Periodic Table [2007], 05 'Intro')
     A reaction: The original table made famous predictions, but also just as many wrong ones (Scerri:143), and Scerri thinks this aspect has been overrated.
15. Nature of Minds / C. Capacities of Minds / 6. Idealisation
Desire for perfection is an illness, if it turns against what is imperfect [Novalis]
     Full Idea: An absolute drive toward perfection and completeness is an illness, as soon as it shows itself to be destructive and averse toward the imperfect, the incomplete.
     From: Novalis (General Draft [1799], 33)
     A reaction: Deep and true! Novalis seems to be a particularist - hanging on to the fine detail of life, rather than being immersed in the theory. These are the philosophers who also turn to literature.
26. Natural Theory / B. Natural Kinds / 1. Natural Kinds
Natural kinds are what are differentiated by nature, and not just by us [Scerri]
     Full Idea: Natural kinds are realistic scientific entities that are differentiated by nature itself rather than by our human attempts at classification.
     From: Eric R. Scerri (The Periodic Table [2007], Intro 'Evol')
If elements are natural kinds, might the groups of the periodic table also be natural kinds? [Scerri]
     Full Idea: Elements defined by their atomic numbers are frequently assumed to represent 'natural kinds' in chemistry. ...The question arises as to whether groups of elements appearing in the periodic table might also represent natural kinds.
     From: Eric R. Scerri (The Periodic Table [2007], 10 'Elements')
     A reaction: Scerri says the distinction is not as sharp as that between the elements. As a realist, he believes there is 'one ideal periodic classification', which would then make the periods into kinds.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / a. Scientific essentialism
The colour of gold is best explained by relativistic effects due to fast-moving inner-shell electrons [Scerri]
     Full Idea: Many seemingly mundane properties of elements such as the characteristic color of gold ....can best be explained by relativistic effects due to fast-moving inner-shell electrons.
     From: Eric R. Scerri (The Periodic Table [2007], 01 'Under')
     A reaction: John Locke - I wish you were reading this! That we could work out the hidden facts of gold, and thereby explain and predict the surface properties we experience, is exactly what Locke thought to be forever impossible.
27. Natural Reality / B. Modern Physics / 4. Standard Model / a. Concept of matter
The stability of nuclei can be estimated through their binding energy [Scerri]
     Full Idea: The stability of nuclei can be estimated through their binding energy, a quantity given by the difference between their masses and the masses of their constituent particles.
     From: Eric R. Scerri (The Periodic Table [2007], 10 'Stabil')
If all elements are multiples of one (of hydrogen), that suggests once again that matter is unified [Scerri]
     Full Idea: The work of Moseley and others rehabilitated Prout's hypothesis that all elements were composites of hydrogen, being exact multiples of 1. ..This revitalized some philososophical notions of the unity of all matter, criticised by Mendeleev and others.
     From: Eric R. Scerri (The Periodic Table [2007], 06 'Philos')
27. Natural Reality / F. Chemistry / 1. Chemistry
The electron is the main source of chemical properties [Scerri]
     Full Idea: It is the electron that is mainly responsible for the chemical properties of the elements.
     From: Eric R. Scerri (The Periodic Table [2007], 06 'Intro')
A big chemistry idea is that covalent bonds are shared electrons, not transfer of electrons [Scerri]
     Full Idea: One of the most influential ideas in modern chemistry is of a covalent bond as a shared pair of electrons (not as transfer of electrons and the formation of ionic bonds).
     From: Eric R. Scerri (The Periodic Table [2007], 08 'Intro')
     A reaction: Gilbert Newton Lewis was responsible for this.
Does radioactivity show that only physics can explain chemistry? [Scerri]
     Full Idea: Some authors believe that the interpretation of the properties of the elements passed from chemistry to physics as a result of the discovery of radioactivity. ...I believe this view to be overly reductionist.
     From: Eric R. Scerri (The Periodic Table [2007], 06 'Radio')
     A reaction: It is all a matter of the explanations, and how far down they have to go. If most non-radiocative chemistry doesn't need to mention the physics, then chemistry is largely autonomous.
How can poisonous elements survive in the nutritious compound they compose? [Scerri]
     Full Idea: A central mystery of chemistry is how the elements survive in the compounds they form. For example, how can poisonous grey metal sodium combine with green poisonous gas chlorine, to make salt, which is non-poisonous and essential for life?
     From: Eric R. Scerri (The Periodic Table [2007], Intro 'Elem')
     A reaction: A very nice question which had never occurred to me. If our digestive system pulled the sodium apart from the chlorine, we would die.
Periodicity and bonding are the two big ideas in chemistry [Scerri]
     Full Idea: The two big ideas in chemistry are chemical periodicity and chemical bonding, and they are deeply interconnected.
     From: Eric R. Scerri (The Periodic Table [2007], Intro 'Per')
Chemistry does not work from general principles, but by careful induction from large amounts of data [Scerri]
     Full Idea: Unlike in physics, chemical reasoning does not generally proceed unambiguously from general principles. It is a more inductive science in which large amounts of observational data must be carefully weighed.
     From: Eric R. Scerri (The Periodic Table [2007], 05 'Mendel')
     A reaction: This is why essentialist thinking was important for Mendeleev, because it kept his focus on the core facts beneath the messy and incomplete data.
27. Natural Reality / F. Chemistry / 2. Modern Elements
It is now thought that all the elements have literally evolved from hydrogen [Scerri]
     Full Idea: The elements are now believed to have literally evolved from hydrogen by various mechanisms.
     From: Eric R. Scerri (The Periodic Table [2007], 10 'Evol)
19th C views said elements survived abstractly in compounds, but also as 'material ingredients' [Scerri]
     Full Idea: In the 19th century abstract elements were believed to be permanent and responsible for observed properties in compounds, but (departing from Aristotle) they were also 'material ingredients', thus linking the metaphysical and material realm.
     From: Eric R. Scerri (The Periodic Table [2007], 04 'Nature')
     A reaction: I'm not sure I can make sense of this gulf between the metaphysical and the material realm, so this was an account heading for disaster.
27. Natural Reality / F. Chemistry / 3. Periodic Table
Moseley, using X-rays, showed that atomic number ordered better than atomic weight [Scerri]
     Full Idea: By using X-rays, Henry Moseley later discovered that a better ordering principle for the periodic system is atomic numbers rather than atomic weight, by subjecting many different elements to bombardment.
     From: Eric R. Scerri (The Periodic Table [2007], 06 'Intro')
     A reaction: Moseley was killed in the First World War at the age of 26. It is interesting that they more or less worked out the whole table, before they discovered the best principle on which to found it.
Some suggested basing the new periodic table on isotopes, not elements [Scerri]
     Full Idea: Some chemists even suggested that the periodic table would have to be abandoned in favor of a classification system that included a separate place for every single isotope.
     From: Eric R. Scerri (The Periodic Table [2007], 06 'Intro')
     A reaction: The extreme case is tin, which has 21 isotopes, so is tin a fundamental, or is each of the isotopes a fundamental? Does there have to be a right answer to that? All tin isotopes basically react in the same way, so we stick with the elements table.
Elements are placed in the table by the number of positive charges - the atomic number [Scerri]
     Full Idea: The serial number of an element in the periodic table, its atomic number, corresponds to the number of positive charges in the atom.
     From: Eric R. Scerri (The Periodic Table [2007], 07 'Models')
     A reaction: Note that this is a feature of the nucleus, despite that fact that the electrons decide the chemical properties. A nice model for Locke's views on essentialism.
Elements in the table are grouped by having the same number of outer-shell electrons [Scerri]
     Full Idea: The modern notion is that atoms fall into the same group of the periodic table if they possess the same numbers of outer-shell electrons.
     From: Eric R. Scerri (The Periodic Table [2007], 07 'Quantum')
     A reaction: Scerri goes on to raise questions about this, on p.242. By this principle helium should be an alkaline earth element, but it isn't.
Orthodoxy says the periodic table is explained by quantum mechanics [Scerri]
     Full Idea: The prevailing reductionist climate implies that quantum mechanics inevitably provides a more fundamental explanation for the periodic system.
     From: Eric R. Scerri (The Periodic Table [2007], 08 'Concl')
     A reaction: Scerri has argued that chemists did much better than physicists in working out how the outer electron shells of atoms worked, by induction from data, rather than inference from basic principles.
Pauli explained the electron shells, but not the lengths of the periods in the table [Scerri]
     Full Idea: Pauli explained the maximum number of electrons successive shells can accommodate, ...but it does not explain the lengths of the periods, which is the really crucial property of the periodic table.
     From: Eric R. Scerri (The Periodic Table [2007], 07 'Pauli')
     A reaction: Paulis' Exclusion Principle says no two electrons in an atom can have the same set of four quantum numbers. He added 'spin' as a fourth number. It means 'electrons cannot be distinguished' (243). Scerri says the big problem is still not fully explained.
Moseley showed the elements progress in units, and thereby clearly identified the gaps [Scerri]
     Full Idea: Moseley's work showed that the successive elements in the periodic table have an atomic number greater by one unit. The gaps could then be identified definitively, as 43, 61, 72, 75, 85, 87, and 91.
     From: Eric R. Scerri (The Periodic Table [2007], 06 'Henry')
     A reaction: [compressed]
Since 99.96% of the universe is hydrogen and helium, the periodic table hardly matters [Scerri]
     Full Idea: All the elements other than hydrogen and helium make up just 0.04% of the universe. Seen from this perspective, the periodic table appears to rather insignificant.
     From: Eric R. Scerri (The Periodic Table [2007], 10 'Astro')
Elements were ordered by equivalent weight; later by atomic weight; finally by atomic number [Scerri]
     Full Idea: Historically, the ordering of elements across periods was determined by equivalent weight, then later by atomic weight, and eventually by atomic number.
     From: Eric R. Scerri (The Periodic Table [2007], 01 'React')
     A reaction: So they used to be ordered by quantities (measured by real numbers), but eventually were ordered by unit items (counted by natural numbers). There need to be distinct protons (unified) to be counted.
The best classification needs the deepest and most general principles of the atoms [Scerri]
     Full Idea: An optimal classification can be obtained by identifying the deepest and most general principles that govern the atoms of the elements.
     From: Eric R. Scerri (The Periodic Table [2007], 10 'Continuum')
     A reaction: He adds (p.286) that the best system will add the 'greatest degree of regularity' to these best principles.
To explain the table, quantum mechanics still needs to explain order of shell filling [Scerri]
     Full Idea: The order of shell filling has not yet been deduced from first principles, and this issue cannot be avoided if one is to really ask whether quantum mechanics explains the periodic system in a fundamental manner.
     From: Eric R. Scerri (The Periodic Table [2007], 09 'From')
28. God / B. Proving God / 2. Proofs of Reason / a. Ontological Proof
An existing thing is even greater if its non-existence is inconceivable [Anselm]
     Full Idea: Something can be thought of as existing, which cannot be thought of as not existing, and this is greater than that which cannot be thought of as not existing.
     From: Anselm (Proslogion [1090], Ch 3)
     A reaction: This is a necessary addition, to single out the concept of God as special. But you really must give reasons for saying God's non-existence is inconceivable. Atheists seem to manage.
Conceiving a greater being than God leads to absurdity [Anselm]
     Full Idea: If some mind could think of something better than thou, the creature would rise above the Creator and judge its Creator; but this is altogether absurd.
     From: Anselm (Proslogion [1090], Ch 3)
     A reaction: An error, revealing a certain desperation. If a greafer being could be conceived than the being so far imagined as God (a necessarily existing being), that being would BE God, by his own argument (and not some arrogant 'creature').
Even the fool can hold 'a being than which none greater exists' in his understanding [Anselm]
     Full Idea: Even the fool must be convinced that a being than which none greater can be thought exists at least in his understanding, since when he hears this he understands it, and whatever is understood is in the understanding.
     From: Anselm (Proslogion [1090], Ch 2)
     A reaction: Psalm 14.1: 'The fool hath said in his heart, there is no God'. But how does the fool interpret the words, if he has limited imagination? He might get no further than an attractive film star. He would need prompting to think of a spiritual being.
If that than which a greater cannot be thought actually exists, that is greater than the mere idea [Anselm]
     Full Idea: Clearly that than which a greater cannot be thought cannot exist in the understanding alone. For it it is actually in the understanding alone, it can be thought of as existing also in reality, and this is greater.
     From: Anselm (Proslogion [1090], Ch 2)
     A reaction: The suppressed premise is 'something actually existing is greater than the mere conception of it'. As it stands this is wrong. I can imagine a supreme evil. But see Idea 21243.
A perfection must be independent and unlimited, and the necessary existence of Anselm's second proof gives this [Malcolm on Anselm]
     Full Idea: Anselm's second proof works, because he sees that necessary existence (or the impossibility of non-existence) really is a perfection. This is because a perfection requires no dependence or limit or impediment.
     From: comment on Anselm (Proslogion [1090], Ch 3) by Norman Malcolm - Anselm's Argument Sect II
     A reaction: I have the usual problem, that it doesn't seem to follow that the perfect existence of something bestows a perfection. It may be necessary that 'for every large animal there exists a disease'. Satan may exist necessarily.
The word 'God' can be denied, but understanding shows God must exist [Anselm]
     Full Idea: We think of a thing when we say the world, and in another way when we think of the very thing itself. In the second sense God cannot be thought of as nonexistent. No one who understands can think God does not exist.
     From: Anselm (Proslogion [1090], Ch 4)
     A reaction: It seems open to the atheist to claim the exact opposite - that you can commit to God's existence if it is just a word, but understanding shows that God is impossible (perhaps because of contradictions). How to arbitrate?
Guanilo says a supremely fertile island must exist, just because we can conceive it [Anselm]
     Full Idea: Guanilo supposes that we imagine an island surpassing all lands in its fertility. We might then say that we cannot doubt that it truly exists is reality, because anyone can conceive it from a verbal description.
     From: Anselm (Proslogion [1090], Reply 3)
     A reaction: Guanilo was a very naughty monk, who must have had sleepless nights over this. One could further ask whether an island might have necessary existence. Anselm needs 'a being' to be a special category of thing.
Nonexistence is impossible for the greatest thinkable thing, which has no beginning or end [Anselm]
     Full Idea: If anyone does think of something a greater than which cannot be thought, then he thinks of something which cannot be thought of as nonexistent, ...for then it could be thought of as having a beginning and an end. And this is impossible.
     From: Anselm (Proslogion [1090], Reply 3)
     A reaction: A nice idea, but it has a flip side. If the atheist denies God's existence, then it follows that (because no beginning is possible for such a being) the existence of God is impossible. Anselm adds that contingent existents have parts (unlike God).
28. God / B. Proving God / 2. Proofs of Reason / b. Ontological Proof critique
Anselm's first proof fails because existence isn't a real predicate, so it can't be a perfection [Malcolm on Anselm]
     Full Idea: Anselm's first proof fails, because he treats existence as being a perfection, which it isn't, because that would make it a real predicate.
     From: comment on Anselm (Proslogion [1090], Ch 2) by Norman Malcolm - Anselm's Argument Sect I
     A reaction: Not everyone accepts Kant's claim that existence cannot be a predicate. They all seem to know what a perfection is. Can the Mona Lisa (an object) not be a perfection? Must it be broken down into perfect predicates?