Combining Texts

All the ideas for 'Stipulation, Meaning and Apriority', 'The Foundations of Mathematics' and 'Maths as a Science of Patterns'

unexpand these ideas     |    start again     |     specify just one area for these texts


16 ideas

2. Reason / D. Definition / 13. Against Definition
How do we determine which of the sentences containing a term comprise its definition? [Horwich]
     Full Idea: How are we to determine which of the sentences containing a term comprise its definition?
     From: Paul Horwich (Stipulation, Meaning and Apriority [2000], §2)
     A reaction: Nice question. If I say 'philosophy is the love of wisdom' and 'philosophy bores me', why should one be part of its definition and the other not? What if I stipulated that the second one is part of my definition, and the first one isn't?
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
Axioms are often affirmed simply because they produce results which have been accepted [Resnik]
     Full Idea: Many axioms have been proposed, not on the grounds that they can be directly known, but rather because they produce a desired body of previously recognised results.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], One.5.1)
     A reaction: This is the perennial problem with axioms - whether we start from them, or whether we deduce them after the event. There is nothing wrong with that, just as we might infer the existence of quarks because of their results.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
You would cripple mathematics if you denied Excluded Middle [Hilbert]
     Full Idea: Taking the principle of Excluded Middle away from the mathematician would be the same, say, as prohibiting the astronomer from using the telescope or the boxer from using his fists.
     From: David Hilbert (The Foundations of Mathematics [1927], p.476), quoted by Ian Rumfitt - The Boundary Stones of Thought 9.4
     A reaction: [p.476 in Van Heijenoort]
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematical realism says that maths exists, is largely true, and is independent of proofs [Resnik]
     Full Idea: Mathematical realism is the doctrine that mathematical objects exist, that much contemporary mathematics is true, and that the existence and truth in question is independent of our constructions, beliefs and proofs.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], Three.12.9)
     A reaction: As thus defined, I would call myself a mathematical realist, but everyone must hesitate a little at the word 'exist' and ask, how does it exist? What is it 'made of'? To say that it exists in the way that patterns exist strikes me as very helpful.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Mathematical constants and quantifiers only exist as locations within structures or patterns [Resnik]
     Full Idea: In maths the primary subject-matter is not mathematical objects but structures in which they are arranged; our constants and quantifiers denote atoms, structureless points, or positions in structures; they have no identity outside a structure or pattern.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], Three.10.1)
     A reaction: This seems to me a very promising idea for the understanding of mathematics. All mathematicians acknowledge that the recognition of patterns is basic to the subject. Even animals recognise patterns. It is natural to invent a language of patterns.
Sets are positions in patterns [Resnik]
     Full Idea: On my view, sets are positions in certain patterns.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], Three.10.5)
     A reaction: I have always found the ontology of a 'set' puzzling, because they seem to depend on prior reasons why something is a member of a given set, which cannot always be random. It is hard to explain sets without mentioning properties.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Structuralism must explain why a triangle is a whole, and not a random set of points [Resnik]
     Full Idea: An objection is that structuralism fails to explain why certain mathematical patterns are unified wholes while others are not; for instance, some think that an ontological account of mathematics must explain why a triangle is not a 'random' set of points.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], Three.10.4)
     A reaction: This is an indication that we are not just saying that we recognise patterns in nature, but that we also 'see' various underlying characteristics of the patterns. The obvious suggestion is that we see meta-patterns.
There are too many mathematical objects for them all to be mental or physical [Resnik]
     Full Idea: If we take mathematics at its word, there are too many mathematical objects for it to be plausible that they are all mental or physical objects.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], One.1)
     A reaction: No one, of course, has ever claimed that they are, but this is a good starting point for assessing the ontology of mathematics. We are going to need 'rules', which can deduce the multitudinous mathematical objects from a small ontology.
Maths is pattern recognition and representation, and its truth and proofs are based on these [Resnik]
     Full Idea: I argue that mathematical knowledge has its roots in pattern recognition and representation, and that manipulating representations of patterns provides the connection between the mathematical proof and mathematical truth.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], One.1)
     A reaction: The suggestion that patterns are at the basis of the ontology of mathematics is the most illuminating thought I have encountered in the area. It immediately opens up the possibility of maths being an entirely empirical subject.
Congruence is the strongest relationship of patterns, equivalence comes next, and mutual occurrence is the weakest [Resnik]
     Full Idea: Of the equivalence relationships which occur between patterns, congruence is the strongest, equivalence the next, and mutual occurrence the weakest. None of these is identity, which would require the same position.
     From: Michael D. Resnik (Maths as a Science of Patterns [1997], Three.10.3)
     A reaction: This gives some indication of how an account of mathematics as a science of patterns might be built up. Presumably the recognition of these 'degrees of strength' cannot be straightforward observation, but will need an a priori component?
12. Knowledge Sources / A. A Priori Knowledge / 1. Nature of the A Priori
A priori belief is not necessarily a priori justification, or a priori knowledge [Horwich]
     Full Idea: It is one thing to believe something a priori and another for this belief to be epistemically justified. The latter is required for a priori knowledge.
     From: Paul Horwich (Stipulation, Meaning and Apriority [2000], §8)
     A reaction: Personally I would agree with this, because I don't think anything should count as knowledge if it doesn't have supporting reasons, but fans of a priori knowledge presumably think that certain basic facts are just known. They are a priori justified.
12. Knowledge Sources / A. A Priori Knowledge / 6. A Priori from Reason
Understanding needs a priori commitment [Horwich]
     Full Idea: Understanding is itself based on a priori commitment.
     From: Paul Horwich (Stipulation, Meaning and Apriority [2000], §12)
     A reaction: This sounds plausible, but needs more justification than Horwich offers. This is the sort of New Rationalist idea I associate with Bonjour. The crucial feature of the New lot is, I take it, their fallibilism. All understanding is provisional.
12. Knowledge Sources / A. A Priori Knowledge / 8. A Priori as Analytic
Meaning is generated by a priori commitment to truth, not the other way around [Horwich]
     Full Idea: Our a priori commitment to certain sentences is not really explained by our knowledge of a word's meaning. It is the other way around. We accept a priori that the sentences are true, and thereby provide it with meaning.
     From: Paul Horwich (Stipulation, Meaning and Apriority [2000], §8)
     A reaction: This sounds like a lovely trump card, but how on earth do you decide that a sentence is true if you don't know what it means? Personally I would take it that we are committed to the truth of a proposition, before we have a sentence for it.
12. Knowledge Sources / A. A Priori Knowledge / 9. A Priori from Concepts
Meanings and concepts cannot give a priori knowledge, because they may be unacceptable [Horwich]
     Full Idea: A priori knowledge of logic and mathematics cannot derive from meanings or concepts, because someone may possess such concepts, and yet disagree with us about them.
     From: Paul Horwich (Stipulation, Meaning and Apriority [2000], §12)
     A reaction: A good argument. The thing to focus on is not whether such ideas are a priori, but whether they are knowledge. I think we should employ the word 'intuition' for a priori candidates for knowledge, and demand further justification for actual knowledge.
If we stipulate the meaning of 'number' to make Hume's Principle true, we first need Hume's Principle [Horwich]
     Full Idea: If we stipulate the meaning of 'the number of x's' so that it makes Hume's Principle true, we must accept Hume's Principle. But a precondition for this stipulation is that Hume's Principle be accepted a priori.
     From: Paul Horwich (Stipulation, Meaning and Apriority [2000], §9)
     A reaction: Yet another modern Quinean argument that all attempts at defining things are circular. I am beginning to think that the only a priori knowledge we have is of when a group of ideas is coherent. Calling it 'intuition' might be more accurate.
12. Knowledge Sources / A. A Priori Knowledge / 10. A Priori as Subjective
A priori knowledge (e.g. classical logic) may derive from the innate structure of our minds [Horwich]
     Full Idea: One potential source of a priori knowledge is the innate structure of our minds. We might, for example, have an a priori commitment to classical logic.
     From: Paul Horwich (Stipulation, Meaning and Apriority [2000], §11)
     A reaction: Horwich points out that to be knowledge it must also say that we ought to believe it. I'm wondering whether if we divided the whole territory of the a priori up into intuitions and then coherent justifications, the whole problem would go away.