Combining Texts

All the ideas for 'Stipulation, Meaning and Apriority', 'Investigations in the Foundations of Set Theory I' and 'Letters to Leibniz'

unexpand these ideas     |    start again     |     specify just one area for these texts


22 ideas

2. Reason / D. Definition / 8. Impredicative Definition
Predicative definitions are acceptable in mathematics if they distinguish objects, rather than creating them? [Zermelo, by Lavine]
     Full Idea: On Zermelo's view, predicative definitions are not only indispensable to mathematics, but they are unobjectionable since they do not create the objects they define, but merely distinguish them from other objects.
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Shaughan Lavine - Understanding the Infinite V.1
     A reaction: This seems to have an underlying platonism, that there are hitherto undefined 'objects' lying around awaiting the honour of being defined. Hm.
2. Reason / D. Definition / 13. Against Definition
How do we determine which of the sentences containing a term comprise its definition? [Horwich]
     Full Idea: How are we to determine which of the sentences containing a term comprise its definition?
     From: Paul Horwich (Stipulation, Meaning and Apriority [2000], §2)
     A reaction: Nice question. If I say 'philosophy is the love of wisdom' and 'philosophy bores me', why should one be part of its definition and the other not? What if I stipulated that the second one is part of my definition, and the first one isn't?
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
No one can conceive of a possible substance, apart from those which God has created [Arnauld]
     Full Idea: I am much mistaken if there is anyone who dares to say that he can conceive of a purely possible substance, …for although one talks so much of them, one never conceives them except according to the notion of those which God has created.
     From: Antoine Arnauld (Letters to Leibniz [1686], 1686.05.13), quoted by David Wiggins - Sameness and Substance 4.2
     A reaction: This idea cashes out in the 'necessitism' of Tim Williamson, and views on the Barcan formulae in modal logic.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
We take set theory as given, and retain everything valuable, while avoiding contradictions [Zermelo]
     Full Idea: Starting from set theory as it is historically given ...we must, on the one hand, restrict these principles sufficiently to exclude as contradiction and, on the other, take them sufficiently wide to retain all that is valuable in this theory.
     From: Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908], Intro)
     A reaction: Maddy calls this the one-step-back-from-disaster rule of thumb. Zermelo explicitly mentions the 'Russell antinomy' that blocked Frege's approach to sets.
Set theory investigates number, order and function, showing logical foundations for mathematics [Zermelo]
     Full Idea: Set theory is that branch whose task is to investigate mathematically the fundamental notions 'number', 'order', and 'function', taking them in their pristine, simple form, and to develop thereby the logical foundations of all of arithmetic and analysis.
     From: Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908], Intro)
     A reaction: At this point Zermelo seems to be a logicist. Right from the start set theory was meant to be foundational to mathematics, and not just a study of the logic of collections.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
ZFC: Existence, Extension, Specification, Pairing, Unions, Powers, Infinity, Choice [Zermelo, by Clegg]
     Full Idea: Zermelo-Fraenkel axioms: Existence (at least one set); Extension (same elements, same set); Specification (a condition creates a new set); Pairing (two sets make a set); Unions; Powers (all subsets make a set); Infinity (set of successors); Choice
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.15
Zermelo published his axioms in 1908, to secure a controversial proof [Zermelo, by Maddy]
     Full Idea: Zermelo proposed his listed of assumptions (including the controversial Axiom of Choice) in 1908, in order to secure his controversial proof of Cantor's claim that ' we can always bring any well-defined set into the form of a well-ordered set'.
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Penelope Maddy - Believing the Axioms I §1
     A reaction: This is interesting because it sometimes looks as if axiom systems are just a way of tidying things up. Presumably it is essential to get people to accept the axioms in their own right, the 'old-fashioned' approach that they be self-evident.
Set theory can be reduced to a few definitions and seven independent axioms [Zermelo]
     Full Idea: I intend to show how the entire theory created by Cantor and Dedekind can be reduced to a few definitions and seven principles, or axioms, which appear to be mutually independent.
     From: Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908], Intro)
     A reaction: The number of axioms crept up to nine or ten in subsequent years. The point of axioms is maximum reduction and independence from one another. He says nothing about self-evidence (though Boolos claimed a degree of that).
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Zermelo introduced Pairing in 1930, and it seems fairly obvious [Zermelo, by Maddy]
     Full Idea: Zermelo's Pairing Axiom superseded (in 1930) his original 1908 Axiom of Elementary Sets. Like Union, its only justification seems to rest on 'limitations of size' and on the 'iterative conception'.
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Penelope Maddy - Believing the Axioms I §1.3
     A reaction: Maddy says of this and Union, that they seem fairly obvious, but that their justification is of prime importance, if we are to understand what the axioms should be.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Zermelo used Foundation to block paradox, but then decided that only Separation was needed [Zermelo, by Maddy]
     Full Idea: Zermelo used a weak form of the Axiom of Foundation to block Russell's paradox in 1906, but in 1908 felt that the form of his Separation Axiom was enough by itself, and left the earlier axiom off his published list.
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Penelope Maddy - Believing the Axioms I §1.2
     A reaction: Foundation turns out to be fairly controversial. Barwise actually proposes Anti-Foundation as an axiom. Foundation seems to be the rock upon which the iterative view of sets is built. Foundation blocks infinite descending chains of sets, and circularity.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / m. Axiom of Separation
The Axiom of Separation requires set generation up to one step back from contradiction [Zermelo, by Maddy]
     Full Idea: The most characteristic Zermelo axiom is Separation, guided by a new rule of thumb: 'one step back from disaster' - principles of set generation should be as strong as possible short of contradiction.
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Penelope Maddy - Believing the Axioms I §1.4
     A reaction: Why is there an underlying assumption that we must have as many sets as possible? We are then tempted to abolish axioms like Foundation, so that we can have even more sets!
Not every predicate has an extension, but Separation picks the members that satisfy a predicate [Zermelo, by Hart,WD]
     Full Idea: Zermelo assumes that not every predicate has an extension but rather that given a set we may separate out from it those of its members satisfying the predicate. This is called 'separation' (Aussonderung).
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by William D. Hart - The Evolution of Logic 3
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
In ZF, the Burali-Forti Paradox proves that there is no set of all ordinals [Zermelo, by Hart,WD]
     Full Idea: In Zermelo's set theory, the Burali-Forti Paradox becomes a proof that there is no set of all ordinals (so 'is an ordinal' has no extension).
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by William D. Hart - The Evolution of Logic 3
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
For Zermelo the successor of n is {n} (rather than n U {n}) [Zermelo, by Maddy]
     Full Idea: For Zermelo the successor of n is {n} (rather than Von Neumann's successor, which is n U {n}).
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Penelope Maddy - Naturalism in Mathematics I.2 n8
     A reaction: I could ask some naive questions about the comparison of these two, but I am too shy about revealing my ignorance.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Zermelo believed, and Von Neumann seemed to confirm, that numbers are sets [Zermelo, by Maddy]
     Full Idea: Zermelo was a reductionist, and believed that theorems purportedly about numbers (cardinal or ordinal) are really about sets, and since Von Neumann's definitions of ordinals and cardinals as sets, this has become common doctrine.
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Penelope Maddy - Believing the Axioms I §1.8
     A reaction: Frege has a more sophisticated take on this approach. It may just be an updating of the Greek idea that arithmetic is about treating many things as a unit. A set bestows an identity on a group, and that is all that is needed.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Different versions of set theory result in different underlying structures for numbers [Zermelo, by Brown,JR]
     Full Idea: In Zermelo's set-theoretic definition of number, 2 is a member of 3, but not a member of 4; in Von Neumann's definition every number is a member of every larger number. This means they have two different structures.
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by James Robert Brown - Philosophy of Mathematics Ch. 4
     A reaction: This refers back to the dilemma highlighted by Benacerraf, which was supposed to be the motivation for structuralism. My intuition says that the best answer is that they are both wrong. In a pattern, the nodes aren't 'members' of one another.
12. Knowledge Sources / A. A Priori Knowledge / 1. Nature of the A Priori
A priori belief is not necessarily a priori justification, or a priori knowledge [Horwich]
     Full Idea: It is one thing to believe something a priori and another for this belief to be epistemically justified. The latter is required for a priori knowledge.
     From: Paul Horwich (Stipulation, Meaning and Apriority [2000], §8)
     A reaction: Personally I would agree with this, because I don't think anything should count as knowledge if it doesn't have supporting reasons, but fans of a priori knowledge presumably think that certain basic facts are just known. They are a priori justified.
12. Knowledge Sources / A. A Priori Knowledge / 6. A Priori from Reason
Understanding needs a priori commitment [Horwich]
     Full Idea: Understanding is itself based on a priori commitment.
     From: Paul Horwich (Stipulation, Meaning and Apriority [2000], §12)
     A reaction: This sounds plausible, but needs more justification than Horwich offers. This is the sort of New Rationalist idea I associate with Bonjour. The crucial feature of the New lot is, I take it, their fallibilism. All understanding is provisional.
12. Knowledge Sources / A. A Priori Knowledge / 8. A Priori as Analytic
Meaning is generated by a priori commitment to truth, not the other way around [Horwich]
     Full Idea: Our a priori commitment to certain sentences is not really explained by our knowledge of a word's meaning. It is the other way around. We accept a priori that the sentences are true, and thereby provide it with meaning.
     From: Paul Horwich (Stipulation, Meaning and Apriority [2000], §8)
     A reaction: This sounds like a lovely trump card, but how on earth do you decide that a sentence is true if you don't know what it means? Personally I would take it that we are committed to the truth of a proposition, before we have a sentence for it.
12. Knowledge Sources / A. A Priori Knowledge / 9. A Priori from Concepts
Meanings and concepts cannot give a priori knowledge, because they may be unacceptable [Horwich]
     Full Idea: A priori knowledge of logic and mathematics cannot derive from meanings or concepts, because someone may possess such concepts, and yet disagree with us about them.
     From: Paul Horwich (Stipulation, Meaning and Apriority [2000], §12)
     A reaction: A good argument. The thing to focus on is not whether such ideas are a priori, but whether they are knowledge. I think we should employ the word 'intuition' for a priori candidates for knowledge, and demand further justification for actual knowledge.
If we stipulate the meaning of 'number' to make Hume's Principle true, we first need Hume's Principle [Horwich]
     Full Idea: If we stipulate the meaning of 'the number of x's' so that it makes Hume's Principle true, we must accept Hume's Principle. But a precondition for this stipulation is that Hume's Principle be accepted a priori.
     From: Paul Horwich (Stipulation, Meaning and Apriority [2000], §9)
     A reaction: Yet another modern Quinean argument that all attempts at defining things are circular. I am beginning to think that the only a priori knowledge we have is of when a group of ideas is coherent. Calling it 'intuition' might be more accurate.
12. Knowledge Sources / A. A Priori Knowledge / 10. A Priori as Subjective
A priori knowledge (e.g. classical logic) may derive from the innate structure of our minds [Horwich]
     Full Idea: One potential source of a priori knowledge is the innate structure of our minds. We might, for example, have an a priori commitment to classical logic.
     From: Paul Horwich (Stipulation, Meaning and Apriority [2000], §11)
     A reaction: Horwich points out that to be knowledge it must also say that we ought to believe it. I'm wondering whether if we divided the whole territory of the a priori up into intuitions and then coherent justifications, the whole problem would go away.