Combining Texts

All the ideas for 'Stipulation, Meaning and Apriority', 'Letters to William Molyneux' and 'A Tour through Mathematical Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


27 ideas

2. Reason / D. Definition / 13. Against Definition
How do we determine which of the sentences containing a term comprise its definition? [Horwich]
     Full Idea: How are we to determine which of the sentences containing a term comprise its definition?
     From: Paul Horwich (Stipulation, Meaning and Apriority [2000], §2)
     A reaction: Nice question. If I say 'philosophy is the love of wisdom' and 'philosophy bores me', why should one be part of its definition and the other not? What if I stipulated that the second one is part of my definition, and the first one isn't?
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
A 'tautology' must include connectives [Wolf,RS]
     Full Idea: 'For every number x, x = x' is not a tautology, because it includes no connectives.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.2)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
Deduction Theorem: T∪{P}|-Q, then T|-(P→Q), which justifies Conditional Proof [Wolf,RS]
     Full Idea: Deduction Theorem: If T ∪ {P} |- Q, then T |- (P → Q). This is the formal justification of the method of conditional proof (CPP). Its converse holds, and is essentially modus ponens.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.3)
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / d. Universal quantifier ∀
Universal Generalization: If we prove P(x) with no special assumptions, we can conclude ∀xP(x) [Wolf,RS]
     Full Idea: Universal Generalization: If we can prove P(x), only assuming what sort of object x is, we may conclude ∀xP(x) for the same x.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.3)
     A reaction: This principle needs watching closely. If you pick one person in London, with no presuppositions, and it happens to be a woman, can you conclude that all the people in London are women? Fine in logic and mathematics, suspect in life.
Universal Specification: ∀xP(x) implies P(t). True for all? Then true for an instance [Wolf,RS]
     Full Idea: Universal Specification: from ∀xP(x) we may conclude P(t), where t is an appropriate term. If something is true for all members of a domain, then it is true for some particular one that we specify.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.3)
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
Existential Generalization (or 'proof by example'): if we can say P(t), then we can say something is P [Wolf,RS]
     Full Idea: Existential Generalization (or 'proof by example'): From P(t), where t is an appropriate term, we may conclude ∃xP(x).
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.3)
     A reaction: It is amazing how often this vacuous-sounding principles finds itself being employed in discussions of ontology, but I don't quite understand why.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / e. Axiom of the Empty Set IV
Empty Set: ∃x∀y ¬(y∈x). The unique empty set exists [Wolf,RS]
     Full Idea: Empty Set Axiom: ∃x ∀y ¬ (y ∈ x). There is a set x which has no members (no y's). The empty set exists. There is a set with no members, and by extensionality this set is unique.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 2.3)
     A reaction: A bit bewildering for novices. It says there is a box with nothing in it, or a pair of curly brackets with nothing between them. It seems to be the key idea in set theory, because it asserts the idea of a set over and above any possible members.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension Axiom: if a collection is clearly specified, it is a set [Wolf,RS]
     Full Idea: The comprehension axiom says that any collection of objects that can be clearly specified can be considered to be a set.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 2.2)
     A reaction: This is virtually tautological, since I presume that 'clearly specified' means pinning down exact which items are the members, which is what a set is (by extensionality). The naïve version is, of course, not so hot.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
In first-order logic syntactic and semantic consequence (|- and |=) nicely coincide [Wolf,RS]
     Full Idea: One of the most appealing features of first-order logic is that the two 'turnstiles' (the syntactic single |-, and the semantic double |=), which are the two reasonable notions of logical consequence, actually coincide.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.3)
     A reaction: In the excitement about the possibility of second-order logic, plural quantification etc., it seems easy to forget the virtues of the basic system that is the target of the rebellion. The issue is how much can be 'expressed' in first-order logic.
First-order logic is weakly complete (valid sentences are provable); we can't prove every sentence or its negation [Wolf,RS]
     Full Idea: The 'completeness' of first order-logic does not mean that every sentence or its negation is provable in first-order logic. We have instead the weaker result that every valid sentence is provable.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.3)
     A reaction: Peter Smith calls the stronger version 'negation completeness'.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Model theory uses sets to show that mathematical deduction fits mathematical truth [Wolf,RS]
     Full Idea: Model theory uses set theory to show that the theorem-proving power of the usual methods of deduction in mathematics corresponds perfectly to what must be true in actual mathematical structures.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], Pref)
     A reaction: That more or less says that model theory demonstrates the 'soundness' of mathematics (though normal arithmetic is famously not 'complete'). Of course, he says they 'correspond' to the truths, rather than entailing them.
Model theory reveals the structures of mathematics [Wolf,RS]
     Full Idea: Model theory helps one to understand what it takes to specify a mathematical structure uniquely.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.1)
     A reaction: Thus it is the development of model theory which has led to the 'structuralist' view of mathematics.
Model theory 'structures' have a 'universe', some 'relations', some 'functions', and some 'constants' [Wolf,RS]
     Full Idea: A 'structure' in model theory has a non-empty set, the 'universe', as domain of variables, a subset for each 'relation', some 'functions', and 'constants'.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.2)
First-order model theory rests on completeness, compactness, and the Löwenheim-Skolem-Tarski theorem [Wolf,RS]
     Full Idea: The three foundations of first-order model theory are the Completeness theorem, the Compactness theorem, and the Löwenheim-Skolem-Tarski theorem.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.3)
     A reaction: On p.180 he notes that Compactness and LST make no mention of |- and are purely semantic, where Completeness shows the equivalence of |- and |=. All three fail for second-order logic (p.223).
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
An 'isomorphism' is a bijection that preserves all structural components [Wolf,RS]
     Full Idea: An 'isomorphism' is a bijection between two sets that preserves all structural components. The interpretations of each constant symbol are mapped across, and functions map the relation and function symbols.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.4)
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The LST Theorem is a serious limitation of first-order logic [Wolf,RS]
     Full Idea: The Löwenheim-Skolem-Tarski theorem demonstrates a serious limitation of first-order logic, and is one of primary reasons for considering stronger logics.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.7)
5. Theory of Logic / K. Features of Logics / 4. Completeness
If a theory is complete, only a more powerful language can strengthen it [Wolf,RS]
     Full Idea: It is valuable to know that a theory is complete, because then we know it cannot be strengthened without passing to a more powerful language.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.5)
5. Theory of Logic / K. Features of Logics / 10. Monotonicity
Most deductive logic (unlike ordinary reasoning) is 'monotonic' - we don't retract after new givens [Wolf,RS]
     Full Idea: Deductive logic, including first-order logic and other types of logic used in mathematics, is 'monotonic'. This means that we never retract a theorem on the basis of new givens. If T|-φ and T⊆SW, then S|-φ. Ordinary reasoning is nonmonotonic.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.7)
     A reaction: The classic example of nonmonotonic reasoning is the induction that 'all birds can fly', which is retracted when the bird turns out to be a penguin. He says nonmonotonic logic is a rich field in computer science.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
An ordinal is an equivalence class of well-orderings, or a transitive set whose members are transitive [Wolf,RS]
     Full Idea: Less theoretically, an ordinal is an equivalence class of well-orderings. Formally, we say a set is 'transitive' if every member of it is a subset of it, and an ordinal is a transitive set, all of whose members are transitive.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 2.4)
     A reaction: He glosses 'transitive' as 'every member of a member of it is a member of it'. So it's membership all the way down. This is the von Neumann rather than the Zermelo approach (which is based on singletons).
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Modern mathematics has unified all of its objects within set theory [Wolf,RS]
     Full Idea: One of the great achievements of modern mathematics has been the unification of its many types of objects. It began with showing geometric objects numerically or algebraically, and culminated with set theory representing all the normal objects.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], Pref)
     A reaction: His use of the word 'object' begs all sorts of questions, if you are arriving from the street, where an object is something which can cause a bruise - but get used to it, because the word 'object' has been borrowed for new uses.
9. Objects / D. Essence of Objects / 13. Nominal Essence
Things have real essences, but we categorise them according to the ideas we receive [Locke]
     Full Idea: This I do say, that there are real constitutions in things from whence simple ideas flow, which we observe combin'd in them. But we distinguish particular substances into sorts or genera not by real essences or constitutions, but by observed simple ideas.
     From: John Locke (Letters to William Molyneux [1692], 1693.01.20)
     A reaction: This is the clearest statement I can find of Locke's position on essences. He is totally committed to their reality, but strongly aware of the empirical constraints which keep us from direct knowledge of them. He would be amazed by modern discoveries.
12. Knowledge Sources / A. A Priori Knowledge / 1. Nature of the A Priori
A priori belief is not necessarily a priori justification, or a priori knowledge [Horwich]
     Full Idea: It is one thing to believe something a priori and another for this belief to be epistemically justified. The latter is required for a priori knowledge.
     From: Paul Horwich (Stipulation, Meaning and Apriority [2000], §8)
     A reaction: Personally I would agree with this, because I don't think anything should count as knowledge if it doesn't have supporting reasons, but fans of a priori knowledge presumably think that certain basic facts are just known. They are a priori justified.
12. Knowledge Sources / A. A Priori Knowledge / 6. A Priori from Reason
Understanding needs a priori commitment [Horwich]
     Full Idea: Understanding is itself based on a priori commitment.
     From: Paul Horwich (Stipulation, Meaning and Apriority [2000], §12)
     A reaction: This sounds plausible, but needs more justification than Horwich offers. This is the sort of New Rationalist idea I associate with Bonjour. The crucial feature of the New lot is, I take it, their fallibilism. All understanding is provisional.
12. Knowledge Sources / A. A Priori Knowledge / 8. A Priori as Analytic
Meaning is generated by a priori commitment to truth, not the other way around [Horwich]
     Full Idea: Our a priori commitment to certain sentences is not really explained by our knowledge of a word's meaning. It is the other way around. We accept a priori that the sentences are true, and thereby provide it with meaning.
     From: Paul Horwich (Stipulation, Meaning and Apriority [2000], §8)
     A reaction: This sounds like a lovely trump card, but how on earth do you decide that a sentence is true if you don't know what it means? Personally I would take it that we are committed to the truth of a proposition, before we have a sentence for it.
12. Knowledge Sources / A. A Priori Knowledge / 9. A Priori from Concepts
Meanings and concepts cannot give a priori knowledge, because they may be unacceptable [Horwich]
     Full Idea: A priori knowledge of logic and mathematics cannot derive from meanings or concepts, because someone may possess such concepts, and yet disagree with us about them.
     From: Paul Horwich (Stipulation, Meaning and Apriority [2000], §12)
     A reaction: A good argument. The thing to focus on is not whether such ideas are a priori, but whether they are knowledge. I think we should employ the word 'intuition' for a priori candidates for knowledge, and demand further justification for actual knowledge.
If we stipulate the meaning of 'number' to make Hume's Principle true, we first need Hume's Principle [Horwich]
     Full Idea: If we stipulate the meaning of 'the number of x's' so that it makes Hume's Principle true, we must accept Hume's Principle. But a precondition for this stipulation is that Hume's Principle be accepted a priori.
     From: Paul Horwich (Stipulation, Meaning and Apriority [2000], §9)
     A reaction: Yet another modern Quinean argument that all attempts at defining things are circular. I am beginning to think that the only a priori knowledge we have is of when a group of ideas is coherent. Calling it 'intuition' might be more accurate.
12. Knowledge Sources / A. A Priori Knowledge / 10. A Priori as Subjective
A priori knowledge (e.g. classical logic) may derive from the innate structure of our minds [Horwich]
     Full Idea: One potential source of a priori knowledge is the innate structure of our minds. We might, for example, have an a priori commitment to classical logic.
     From: Paul Horwich (Stipulation, Meaning and Apriority [2000], §11)
     A reaction: Horwich points out that to be knowledge it must also say that we ought to believe it. I'm wondering whether if we divided the whole territory of the a priori up into intuitions and then coherent justifications, the whole problem would go away.