Combining Texts

All the ideas for 'Defending the Axioms', 'The Case against Closure (and reply)' and 'Logicism and Ontological Commits. of Arithmetic'

unexpand these ideas     |    start again     |     specify just one area for these texts


24 ideas

3. Truth / F. Semantic Truth / 2. Semantic Truth
Truth in a model is more tractable than the general notion of truth [Hodes]
     Full Idea: Truth in a model is interesting because it provides a transparent and mathematically tractable model - in the 'ordinary' rather than formal sense of the term 'model' - of the less tractable notion of truth.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.131)
     A reaction: This is an important warning to those who wish to build their entire account of truth on Tarski's rigorously formal account of the term. Personally I think we should start by deciding whether 'true' can refer to the mental state of a dog. I say it can.
Truth is quite different in interpreted set theory and in the skeleton of its language [Hodes]
     Full Idea: There is an enormous difference between the truth of sentences in the interpreted language of set theory and truth in some model for the disinterpreted skeleton of that language.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.132)
     A reaction: This is a warning to me, because I thought truth and semantics only entered theories at the stage of 'interpretation'. I must go back and get the hang of 'skeletal' truth, which sounds rather charming. [He refers to set theory, not to logic.]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice paradoxically allows decomposing a sphere into two identical spheres [Maddy]
     Full Idea: One feature of the Axiom of Choice that troubled many mathematicians was the so-called Banach-Tarski paradox: using the Axiom, a sphere can be decomposed into finitely many parts and those parts reassembled into two spheres the same size as the original.
     From: Penelope Maddy (Defending the Axioms [2011], 1.3)
     A reaction: (The key is that the parts are non-measurable). To an outsider it is puzzling that the Axiom has been universally accepted, even though it produces such a result. Someone can explain that, I'm sure.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Higher-order logic may be unintelligible, but it isn't set theory [Hodes]
     Full Idea: Brand higher-order logic as unintelligible if you will, but don't conflate it with set theory.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.131)
     A reaction: [he gives Boolos 1975 as a further reference] This is simply a corrective, because the conflation of second-order logic with set theory is an idea floating around in the literature.
5. Theory of Logic / C. Ontology of Logic / 3. If-Thenism
Critics of if-thenism say that not all starting points, even consistent ones, are worth studying [Maddy]
     Full Idea: If-thenism denies that mathematics is in the business of discovering truths about abstracta. ...[their opponents] obviously don't regard any starting point, even a consistent one, as equally worthy of investigation.
     From: Penelope Maddy (Defending the Axioms [2011], 3.3)
     A reaction: I have some sympathy with if-thenism, in that you can obviously study the implications of any 'if' you like, but deep down I agree with the critics.
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Identity is a level one relation with a second-order definition [Hodes]
     Full Idea: Identity should he considered a logical notion only because it is the tip of a second-order iceberg - a level 1 relation with a pure second-order definition.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984])
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
When an 'interpretation' creates a model based on truth, this doesn't include Fregean 'sense' [Hodes]
     Full Idea: A model is created when a language is 'interpreted', by assigning non-logical terms to objects in a set, according to a 'true-in' relation, but we must bear in mind that this 'interpretation' does not associate anything like Fregean senses with terms.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.131)
     A reaction: This seems like a key point (also made by Hofweber) that formal accounts of numbers, as required by logic, will not give an adequate account of the semantics of number-terms in natural languages.
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Hilbert's geometry and Dedekind's real numbers were role models for axiomatization [Maddy]
     Full Idea: At the end of the nineteenth century there was a renewed emphasis on rigor, the central tool of which was axiomatization, along the lines of Hilbert's axioms for geometry and Dedekind's axioms for real numbers.
     From: Penelope Maddy (Defending the Axioms [2011], 1.3)
If two mathematical themes coincide, that suggest a single deep truth [Maddy]
     Full Idea: The fact that two apparently fruitful mathematical themes turn out to coincide makes it all the more likely that they're tracking a genuine strain of mathematical depth.
     From: Penelope Maddy (Defending the Axioms [2011], 5.3ii)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Mathematics is higher-order modal logic [Hodes]
     Full Idea: I take the view that (agreeing with Aristotle) mathematics only requires the notion of a potential infinity, ...and that mathematics is higher-order modal logic.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984])
     A reaction: Modern 'modal' accounts of mathematics I take to be heirs of 'if-thenism', which seems to have been Russell's development of Frege's original logicism. I'm beginning to think it is right. But what is the subject-matter of arithmetic?
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
Arithmetic must allow for the possibility of only a finite total of objects [Hodes]
     Full Idea: Arithmetic should be able to face boldly the dreadful chance that in the actual world there are only finitely many objects.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.148)
     A reaction: This seems to be a basic requirement for any account of arithmetic, but it was famously a difficulty for early logicism, evaded by making the existence of an infinity of objects into an axiom of the system.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
Every infinite set of reals is either countable or of the same size as the full set of reals [Maddy]
     Full Idea: One form of the Continuum Hypothesis is the claim that every infinite set of reals is either countable or of the same size as the full set of reals.
     From: Penelope Maddy (Defending the Axioms [2011], 2.4 n40)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set-theory tracks the contours of mathematical depth and fruitfulness [Maddy]
     Full Idea: Our set-theoretic methods track the underlying contours of mathematical depth. ...What sets are, most fundamentally, is markers for these contours ...they are maximally effective trackers of certain trains of mathematical fruitfulness.
     From: Penelope Maddy (Defending the Axioms [2011], 3.4)
     A reaction: This seems to make it more like a map of mathematics than the actual essence of mathematics.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
It is claimed that numbers are objects which essentially represent cardinality quantifiers [Hodes]
     Full Idea: The mathematical object-theorist says a number is an object that represents a cardinality quantifier, with the representation relation as the entire essence of the nature of such objects as cardinal numbers like 4.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984])
     A reaction: [compressed] This a classic case of a theory beginning to look dubious once you spell it our precisely. The obvious thought is to make do with the numerical quantifiers, and dispense with the objects. Do other quantifiers need objects to support them?
Numerical terms can't really stand for quantifiers, because that would make them first-level [Hodes]
     Full Idea: The dogmatic Frege is more right than wrong in denying that numerical terms can stand for numerical quantifiers, for there cannot be a language in which object-quantifiers and objects are simultaneously viewed as level zero.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.142)
     A reaction: Subtle. We see why Frege goes on to say that numbers are level zero (i.e. they are objects). We are free, it seems, to rewrite sentences containing number terms to suit whatever logical form appeals. Numbers are just quantifiers?
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
The connection of arithmetic to perception has been idealised away in modern infinitary mathematics [Maddy]
     Full Idea: Ordinary perceptual cognition is most likely involved in our grasp of elementary arithmetic, but ...this connection to the physical world has long since been idealized away in the infinitary structures of contemporary pure mathematics.
     From: Penelope Maddy (Defending the Axioms [2011], 2.3)
     A reaction: Despite this, Maddy's quest is for a 'naturalistic' account of mathematics. She ends up defending 'objectivity' (and invoking Tyler Burge), rather than even modest realism. You can't 'idealise away' the counting of objects. I blame Cantor.
7. Existence / D. Theories of Reality / 7. Fictionalism
Talk of mirror images is 'encoded fictions' about real facts [Hodes]
     Full Idea: Talk about mirror images is a sort of fictional discourse. Statements 'about' such fictions are not made true or false by our whims; rather they 'encode' facts about the things reflected in mirrors.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.146)
     A reaction: Hodes's proposal for how we should view abstract objects (c.f. Frege and Dummett on 'the equator'). The facts involved are concrete, but Hodes is offering 'encoding fictionalism' as a linguistic account of such abstractions. He applies it to numbers.
13. Knowledge Criteria / A. Justification Problems / 2. Justification Challenges / c. Knowledge closure
Closure says if you know P, and also know P implies Q, then you must know Q [Dretske]
     Full Idea: Closure is the epistemological principle that if S knows that P is true and knows that P implies Q, then, evidentially speaking, this is enough for S to know that Q is true. Nothing more is needed.
     From: Fred Dretske (The Case against Closure (and reply) [2005], p.25)
     A reaction: [Dretske was the first to raise this issue] It is 'closure' because it applies to every case of Q, which is every implication of P that is known. The issue is whether we really do know all such Qs. Dretske doubts it. See his zebra case.
We needn't regret the implications of our regrets; regretting drinking too much implies the past is real [Dretske]
     Full Idea: One doesn't have to regret everything one knows to be implied by what one regrets. Tom regrets drinking three martinis, but doesn't regret what he knows to be implied by this - that he drank 'something', or that the past is real.
     From: Fred Dretske (The Case against Closure (and reply) [2005], p.28)
     A reaction: A nice case of analogy! He's right about regret. Perceptual and inferential knowledge have different grounds. To deny inferential knowledge seems to be a denial that modus ponens can be a justification. But MP gives truth, not knowledge.
Reasons for believing P may not transmit to its implication, Q [Dretske]
     Full Idea: Some reasons for believing P do not transmit to things, Q, known to be implied by P.
     From: Fred Dretske (The Case against Closure (and reply) [2005], p.29)
     A reaction: That seems true enough. I see someone limping, but infer that their leg is damaged. The only question is whether I should accept the inference. How can I accept that inference, but then back out of that knowledge?
Knowing by visual perception is not the same as knowing by implication [Dretske]
     Full Idea: A way of knowing there are cookies in the jar - visual perception - is not a way of knowing what one knows to be implied by this - that visual appearances are not misleading.
     From: Fred Dretske (The Case against Closure (and reply) [2005], p.29)
     A reaction: Why is the 'way of knowing' relevant? Isn't the only question that of whether implication of a truth is in infallible route to a truth (modus ponens)? If you know THAT it is true, then you must believe it, and implication is top quality justification. No?
The only way to preserve our homely truths is to abandon closure [Dretske]
     Full Idea: The only way to preserve knowledge of homely truths, the truths everyone takes themselves to know, is to abandon closure.
     From: Fred Dretske (The Case against Closure (and reply) [2005], p.32)
     A reaction: His point is that knowledge of homely truths seems to imply knowledge of the background facts needed to support them, which he takes to be an unreasonable requirement. I recommend pursuing contextualism, rather than abandoning closure.
P may imply Q, but evidence for P doesn't imply evidence for Q, so closure fails [Dretske]
     Full Idea: The evidence that gives me knowledge of P (there are cookies in the jar) can exist without evidence for knowing Q (they are not fake), despite my knowing that P implies Q. So closure fails.
     From: Fred Dretske (The Case against Closure (and reply) [2005], p.33)
     A reaction: His more famous example is the zebra. How can P imply Q if there is no evidence for Q? Maybe 'there are cookies in the jar' does not entail they are not fake, once you disambiguate what is being said?
We know past events by memory, but we don't know the past is real (an implication) by memory [Dretske]
     Full Idea: The reality of the past (a 'heavyweight implication') ...is something we know to be implied by things we remember, but it is not itself something we remember.
     From: Fred Dretske (The Case against Closure (and reply) [2005], p.35)
     A reaction: If I begin to doubt that the past is real, then I must necessarily begin to doubt my ordinary memories. This seems to be the modus tollens of knowledge closure. Doesn't that imply that the modus ponens was valid, and closure is correct?