Combining Texts

All the ideas for 'Defending the Axioms', 'The philosophical basis of intuitionist logic' and 'Mathematical logic and theory of types'

unexpand these ideas     |    start again     |     specify just one area for these texts


21 ideas

4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Dummett says classical logic rests on meaning as truth, while intuitionist logic rests on assertability [Dummett, by Kitcher]
     Full Idea: Dummett argues that classical logic depends on the choice of the concept of truth as central to the theory of meaning, while for the intuitionist the concept of assertability occupies this position.
     From: report of Michael Dummett (The philosophical basis of intuitionist logic [1973]) by Philip Kitcher - The Nature of Mathematical Knowledge 06.5
     A reaction: Since I can assert any nonsense I choose, this presumably means 'warranted' assertability, which is tied to the concept of proof in mathematics. You can reason about falsehoods, or about uninterpreted variables. Can you 'assert' 'Fx'?
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice paradoxically allows decomposing a sphere into two identical spheres [Maddy]
     Full Idea: One feature of the Axiom of Choice that troubled many mathematicians was the so-called Banach-Tarski paradox: using the Axiom, a sphere can be decomposed into finitely many parts and those parts reassembled into two spheres the same size as the original.
     From: Penelope Maddy (Defending the Axioms [2011], 1.3)
     A reaction: (The key is that the parts are non-measurable). To an outsider it is puzzling that the Axiom has been universally accepted, even though it produces such a result. Someone can explain that, I'm sure.
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Classes can be reduced to propositional functions [Russell, by Hanna]
     Full Idea: Russell held that classes can be reduced to propositional functions.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908]) by Robert Hanna - Rationality and Logic 2.4
     A reaction: The exact nature of a propositional function is disputed amongst Russell scholars (though it is roughly an open sentence of the form 'x is red').
5. Theory of Logic / C. Ontology of Logic / 3. If-Thenism
Critics of if-thenism say that not all starting points, even consistent ones, are worth studying [Maddy]
     Full Idea: If-thenism denies that mathematics is in the business of discovering truths about abstracta. ...[their opponents] obviously don't regard any starting point, even a consistent one, as equally worthy of investigation.
     From: Penelope Maddy (Defending the Axioms [2011], 3.3)
     A reaction: I have some sympathy with if-thenism, in that you can obviously study the implications of any 'if' you like, but deep down I agree with the critics.
5. Theory of Logic / G. Quantification / 1. Quantification
Classical quantification is an infinite conjunction or disjunction - but you may not know all the instances [Dummett]
     Full Idea: Classical quantification represents an infinite conjunction or disjunction, and the truth-value is determined by the infinite sum or product of the instances ....but this presupposes that all the instances already possess determinate truth-values.
     From: Michael Dummett (The philosophical basis of intuitionist logic [1973], p.246)
     A reaction: In the case of the universal quantifier, Dummett is doing no more than citing the classic empiricism objection to induction - that you can't make the universal claim if you don't know all the instances. The claim is still meaningful, though.
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Hilbert's geometry and Dedekind's real numbers were role models for axiomatization [Maddy]
     Full Idea: At the end of the nineteenth century there was a renewed emphasis on rigor, the central tool of which was axiomatization, along the lines of Hilbert's axioms for geometry and Dedekind's axioms for real numbers.
     From: Penelope Maddy (Defending the Axioms [2011], 1.3)
If two mathematical themes coincide, that suggest a single deep truth [Maddy]
     Full Idea: The fact that two apparently fruitful mathematical themes turn out to coincide makes it all the more likely that they're tracking a genuine strain of mathematical depth.
     From: Penelope Maddy (Defending the Axioms [2011], 5.3ii)
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / d. Russell's paradox
The class of classes which lack self-membership leads to a contradiction [Russell, by Grayling]
     Full Idea: The class of teaspoons isn't a teaspoon, so isn't a member of itself; but the class of non-teaspoons is a member of itself. The class of all classes which are not members of themselves is a member of itself if it isn't a member of itself! Paradox.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908]) by A.C. Grayling - Russell Ch.2
     A reaction: A very compressed version of Russell's famous paradox, often known as the 'barber' paradox. Russell developed his Theory of Types in an attempt to counter the paradox. Frege's response was to despair of his own theory.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
Every infinite set of reals is either countable or of the same size as the full set of reals [Maddy]
     Full Idea: One form of the Continuum Hypothesis is the claim that every infinite set of reals is either countable or of the same size as the full set of reals.
     From: Penelope Maddy (Defending the Axioms [2011], 2.4 n40)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set-theory tracks the contours of mathematical depth and fruitfulness [Maddy]
     Full Idea: Our set-theoretic methods track the underlying contours of mathematical depth. ...What sets are, most fundamentally, is markers for these contours ...they are maximally effective trackers of certain trains of mathematical fruitfulness.
     From: Penelope Maddy (Defending the Axioms [2011], 3.4)
     A reaction: This seems to make it more like a map of mathematics than the actual essence of mathematics.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
The connection of arithmetic to perception has been idealised away in modern infinitary mathematics [Maddy]
     Full Idea: Ordinary perceptual cognition is most likely involved in our grasp of elementary arithmetic, but ...this connection to the physical world has long since been idealized away in the infinitary structures of contemporary pure mathematics.
     From: Penelope Maddy (Defending the Axioms [2011], 2.3)
     A reaction: Despite this, Maddy's quest is for a 'naturalistic' account of mathematics. She ends up defending 'objectivity' (and invoking Tyler Burge), rather than even modest realism. You can't 'idealise away' the counting of objects. I blame Cantor.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Type theory seems an extreme reaction, since self-exemplification is often innocuous [Swoyer on Russell]
     Full Idea: Russell's reaction to his paradox (by creating his theory of types) seems extreme, because many cases of self-exemplification are innocuous. The property of being a property is itself a property.
     From: comment on Bertrand Russell (Mathematical logic and theory of types [1908]) by Chris Swoyer - Properties 7.5
     A reaction: Perhaps it is not enough that 'many cases' are innocuous. We are starting from philosophy of mathematics, where precision is essentially. General views about properties come later.
Russell's improvements blocked mathematics as well as paradoxes, and needed further axioms [Russell, by Musgrave]
     Full Idea: Unfortunately, Russell's new logic, as well as preventing the deduction of paradoxes, also prevented the deduction of mathematics, so he supplemented it with additional axioms, of Infinity, of Choice, and of Reducibility.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908]) by Alan Musgrave - Logicism Revisited §2
     A reaction: The first axiom seems to be an empirical hypothesis, and the second has turned out to be independent of logic and set theory.
Type theory means that features shared by different levels cannot be expressed [Morris,M on Russell]
     Full Idea: Russell's theory of types avoided the paradoxes, but it had the result that features common to different levels of the hierarchy become uncapturable (since any attempt to capture them would involve a predicate which disobeyed the hierarchy restrictions).
     From: comment on Bertrand Russell (Mathematical logic and theory of types [1908]) by Michael Morris - Guidebook to Wittgenstein's Tractatus 2H
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Ramified types can be defended as a system of intensional logic, with a 'no class' view of sets [Russell, by Linsky,B]
     Full Idea: A defence of the ramified theory of types comes in seeing it as a system of intensional logic which includes the 'no class' account of sets, and indeed the whole development of mathematics, as just a part.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908]) by Bernard Linsky - Russell's Metaphysical Logic 6.1
     A reaction: So Linsky's basic project is to save logicism, by resting on intensional logic (rather than extensional logic and set theory). I'm not aware that Linsky has acquired followers for this. Maybe Crispin Wright has commented?
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
A set does not exist unless at least one of its specifications is predicative [Russell, by Bostock]
     Full Idea: The idea is that the same set may well have different canonical specifications, i.e. there may be different ways of stating its membership conditions, and so long as one of these is predicative all is well. If none are, the supposed set does not exist.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908]) by David Bostock - Philosophy of Mathematics 8.1
Russell is a conceptualist here, saying some abstracta only exist because definitions create them [Russell, by Bostock]
     Full Idea: It is a conceptualist approach that Russell is relying on. ...The view is that some abstract objects ...exist only because they are definable. It is the definition that would (if permitted) somehow bring them into existence.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908]) by David Bostock - Philosophy of Mathematics 8.1
     A reaction: I'm suddenly thinking that predicativism is rather interesting. Being of an anti-platonist persuasion about abstract 'objects', I take some story about how we generate them to be needed. Psychological abstraction seems right, but a bit vague.
Vicious Circle says if it is expressed using the whole collection, it can't be in the collection [Russell, by Bostock]
     Full Idea: The Vicious Circle Principle says, roughly, that whatever involves, or presupposes, or is only definable in terms of, all of a collection cannot itself be one of the collection.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908], p.63,75) by David Bostock - Philosophy of Mathematics 8.1
     A reaction: This is Bostock's paraphrase of Russell, because Russell never quite puts it clearly. The response is the requirement to be 'predicative'. Bostock emphasises that it mainly concerns definitions. The Principle 'always leads to hierarchies'.
19. Language / A. Nature of Meaning / 4. Meaning as Truth-Conditions
Stating a sentence's truth-conditions is just paraphrasing the sentence [Dummett]
     Full Idea: An ability to state the condition for the truth of a sentence is, in effect, no more than an ability to express the content of the sentence in other words.
     From: Michael Dummett (The philosophical basis of intuitionist logic [1973], p.224)
     A reaction: Alternatively, if you give something other than a paraphrase of the sentence as its meaning (such as a proof of its truth), then you seem to have departed from your target sentence. Can we reduce and eliminate our sentences in this way?
If a sentence is effectively undecidable, we can never know its truth conditions [Dummett]
     Full Idea: If a sentence is effectively undecidable, the condition which must obtain for it to be true is not one which we are capable of recognising whenever it obtains, or of getting ourselves in a position to do so.
     From: Michael Dummett (The philosophical basis of intuitionist logic [1973], p.225)
     A reaction: The instances of 'undecidable' sentences are most clearly seen in mathematics, such as the Continuum Hypothesis or Goldbach's Conjecture, or anything involving vast infinite cardinals. But do you need precise truth-conditions for meaning?
19. Language / A. Nature of Meaning / 6. Meaning as Use
Meaning as use puts use beyond criticism, and needs a holistic view of language [Dummett]
     Full Idea: If use constitutes meaning, it might seem that use is beyond criticism. ....But such an attitude can, ultimately, be supported onlly by the adoption of a holistic view of language.
     From: Michael Dummett (The philosophical basis of intuitionist logic [1973], p.218)
     A reaction: Dummett goes on to say that the rejection of the holistic view of mathematical meaning leads to his preference for intuitionistic logic.