Combining Texts

All the ideas for 'Defending the Axioms', 'Physical Causation' and 'Phenomenalism'

unexpand these ideas     |    start again     |     specify just one area for these texts


12 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice paradoxically allows decomposing a sphere into two identical spheres [Maddy]
     Full Idea: One feature of the Axiom of Choice that troubled many mathematicians was the so-called Banach-Tarski paradox: using the Axiom, a sphere can be decomposed into finitely many parts and those parts reassembled into two spheres the same size as the original.
     From: Penelope Maddy (Defending the Axioms [2011], 1.3)
     A reaction: (The key is that the parts are non-measurable). To an outsider it is puzzling that the Axiom has been universally accepted, even though it produces such a result. Someone can explain that, I'm sure.
5. Theory of Logic / C. Ontology of Logic / 3. If-Thenism
Critics of if-thenism say that not all starting points, even consistent ones, are worth studying [Maddy]
     Full Idea: If-thenism denies that mathematics is in the business of discovering truths about abstracta. ...[their opponents] obviously don't regard any starting point, even a consistent one, as equally worthy of investigation.
     From: Penelope Maddy (Defending the Axioms [2011], 3.3)
     A reaction: I have some sympathy with if-thenism, in that you can obviously study the implications of any 'if' you like, but deep down I agree with the critics.
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Hilbert's geometry and Dedekind's real numbers were role models for axiomatization [Maddy]
     Full Idea: At the end of the nineteenth century there was a renewed emphasis on rigor, the central tool of which was axiomatization, along the lines of Hilbert's axioms for geometry and Dedekind's axioms for real numbers.
     From: Penelope Maddy (Defending the Axioms [2011], 1.3)
If two mathematical themes coincide, that suggest a single deep truth [Maddy]
     Full Idea: The fact that two apparently fruitful mathematical themes turn out to coincide makes it all the more likely that they're tracking a genuine strain of mathematical depth.
     From: Penelope Maddy (Defending the Axioms [2011], 5.3ii)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
Every infinite set of reals is either countable or of the same size as the full set of reals [Maddy]
     Full Idea: One form of the Continuum Hypothesis is the claim that every infinite set of reals is either countable or of the same size as the full set of reals.
     From: Penelope Maddy (Defending the Axioms [2011], 2.4 n40)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set-theory tracks the contours of mathematical depth and fruitfulness [Maddy]
     Full Idea: Our set-theoretic methods track the underlying contours of mathematical depth. ...What sets are, most fundamentally, is markers for these contours ...they are maximally effective trackers of certain trains of mathematical fruitfulness.
     From: Penelope Maddy (Defending the Axioms [2011], 3.4)
     A reaction: This seems to make it more like a map of mathematics than the actual essence of mathematics.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
The connection of arithmetic to perception has been idealised away in modern infinitary mathematics [Maddy]
     Full Idea: Ordinary perceptual cognition is most likely involved in our grasp of elementary arithmetic, but ...this connection to the physical world has long since been idealized away in the infinitary structures of contemporary pure mathematics.
     From: Penelope Maddy (Defending the Axioms [2011], 2.3)
     A reaction: Despite this, Maddy's quest is for a 'naturalistic' account of mathematics. She ends up defending 'objectivity' (and invoking Tyler Burge), rather than even modest realism. You can't 'idealise away' the counting of objects. I blame Cantor.
11. Knowledge Aims / C. Knowing Reality / 2. Phenomenalism
Modern phenomenalism holds that objects are logical constructions out of sense-data [Ayer]
     Full Idea: Nowadays phenomenalism is held to be a theory of perception which says that physical objects are logical constructions out of sense-data.
     From: A.J. Ayer (Phenomenalism [1947], §1)
12. Knowledge Sources / B. Perception / 4. Sense Data / a. Sense-data theory
The concept of sense-data allows us to discuss appearances without worrying about reality [Ayer]
     Full Idea: The introduction of the term 'sense-datum' is a means of referring to appearances without prejudging the question of what it is, if anything, that they are appearances of.
     From: A.J. Ayer (Phenomenalism [1947], §1)
26. Natural Theory / C. Causation / 4. Naturalised causation
Physical causation consists in transference of conserved quantities [Dowe, by Mumford/Anjum]
     Full Idea: For Dowe physical causation consists in transference of conserved quantities.
     From: report of Phil Dowe (Physical Causation [2000]) by S.Mumford/R.Lill Anjum - Getting Causes from Powers 10.2
     A reaction: [see Psillos 2002 on this] This is evidently a modification of the idea of physical causation as energy-transfer, but narrowing it down to exclude trivial cases. I guess. Need better physics.
Causation interaction is an exchange of conserved quantities, such as mass, energy or charge [Dowe, by Psillos]
     Full Idea: Dowe argues that a 'causal process' is a world line of an object with a conserved quantity (such as mass, energy, momentum, charge), and a 'causal interaction' is an exchange between two such objects.
     From: report of Phil Dowe (Physical Causation [2000]) by Stathis Psillos - Causation and Explanation §4.4
     A reaction: This looks very promising. Nice distinction between causal process and causal interaction. 'Conserved quantities' is better physics than just 'energy'. We can hand causation over to the scientist?
26. Natural Theory / D. Laws of Nature / 9. Counterfactual Claims
Dowe commends the Conserved Quantity theory as it avoids mention of counterfactuals [Dowe, by Psillos]
     Full Idea: Dowe commends the Conserved Quantity theory because it avoids any mention of counterfactuals.
     From: report of Phil Dowe (Physical Causation [2000]) by Stathis Psillos - Causation and Explanation §4.4
     A reaction: Clearly the truth of a counterfactual is quite a problem for an empiricist/scientist, but one needs to distinguish between reality and our grasp of it. We commit ourselves to counterfactuals, even if causation is transfer of conserved quantities.