Combining Texts

All the ideas for 'Realism in Mathematics', 'Higher-Order Logic' and 'Set Theory and Its Philosophy'

unexpand these ideas     |    start again     |     specify just one area for these texts


30 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Set theory's three roles: taming the infinite, subject-matter of mathematics, and modes of reasoning [Potter]
     Full Idea: Set theory has three roles: as a means of taming the infinite, as a supplier of the subject-matter of mathematics, and as a source of its modes of reasoning.
     From: Michael Potter (Set Theory and Its Philosophy [2004], Intro 1)
     A reaction: These all seem to be connected with mathematics, but there is also ontological interest in set theory. Potter emphasises that his second role does not entail a commitment to sets 'being' numbers.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Usually the only reason given for accepting the empty set is convenience [Potter]
     Full Idea: It is rare to find any direct reason given for believing that the empty set exists, except for variants of Dedekind's argument from convenience.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 04.3)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: There is at least one limit level [Potter]
     Full Idea: Axiom of Infinity: There is at least one limit level.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 04.9)
     A reaction: A 'limit ordinal' is one which has successors, but no predecessors. The axiom just says there is at least one infinity.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The axiom of choice is controversial, but it could be replaced [Shapiro]
     Full Idea: The axiom of choice has a troubled history, but is now standard in mathematics. It could be replaced with a principle of comprehension for functions), or one could omit the variables ranging over functions.
     From: Stewart Shapiro (Higher-Order Logic [2001], n 3)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
Nowadays we derive our conception of collections from the dependence between them [Potter]
     Full Idea: It is only quite recently that the idea has emerged of deriving our conception of collections from a relation of dependence between them.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 03.2)
     A reaction: This is the 'iterative' view of sets, which he traces back to Gödel's 'What is Cantor's Continuum Problem?'
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
The 'limitation of size' principles say whether properties collectivise depends on the number of objects [Potter]
     Full Idea: We group under the heading 'limitation of size' those principles which classify properties as collectivizing or not according to how many objects there are with the property.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 13.5)
     A reaction: The idea was floated by Cantor, toyed with by Russell (1906), and advocated by von Neumann. The thought is simply that paradoxes start to appear when sets become enormous.
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
Maddy replaces pure sets with just objects and perceived sets of objects [Maddy, by Shapiro]
     Full Idea: Maddy dispenses with pure sets, by sketching a strong set theory in which everything is either a physical object or a set of sets of ...physical objects. Eventually a physiological story of perception will extend to sets of physical objects.
     From: report of Penelope Maddy (Realism in Mathematics [1990]) by Stewart Shapiro - Thinking About Mathematics 8.3
     A reaction: This doesn't seem to find many supporters, but if we accept the perception of resemblances as innate (as in Hume and Quine), it is isn't adding much to see that we intrinsically see things in groups.
4. Formal Logic / G. Formal Mereology / 1. Mereology
Mereology elides the distinction between the cards in a pack and the suits [Potter]
     Full Idea: Mereology tends to elide the distinction between the cards in a pack and the suits.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 02.1)
     A reaction: The example is a favourite of Frege's. Potter is giving a reason why mathematicians opted for set theory. I'm not clear, though, why a pack cannot have either 4 parts or 52 parts. Parts can 'fall under a concept' (such as 'legs'). I'm puzzled.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is Complete, and Compact, with the Löwenheim-Skolem Theorems [Shapiro]
     Full Idea: Early study of first-order logic revealed a number of important features. Gödel showed that there is a complete, sound and effective deductive system. It follows that it is Compact, and there are also the downward and upward Löwenheim-Skolem Theorems.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Some say that second-order logic is mathematics, not logic [Shapiro]
     Full Idea: Some authors argue that second-order logic (with standard semantics) is not logic at all, but is a rather obscure form of mathematics.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
If the aim of logic is to codify inferences, second-order logic is useless [Shapiro]
     Full Idea: If the goal of logical study is to present a canon of inference, a calculus which codifies correct inference patterns, then second-order logic is a non-starter.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
     A reaction: This seems to be because it is not 'complete'. However, moves like plural quantification seem aimed at capturing ordinary language inferences, so the difficulty is only that there isn't a precise 'calculus'.
We can formalize second-order formation rules, but not inference rules [Potter]
     Full Idea: In second-order logic only the formation rules are completely formalizable, not the inference rules.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 01.2)
     A reaction: He cites Gödel's First Incompleteness theorem for this.
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Logical consequence can be defined in terms of the logical terminology [Shapiro]
     Full Idea: Informally, logical consequence is sometimes defined in terms of the meanings of a certain collection of terms, the so-called 'logical terminology'.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
     A reaction: This seems to be a compositional account, where we build a full account from an account of the atomic bits, perhaps presented as truth-tables.
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Second-order variables also range over properties, sets, relations or functions [Shapiro]
     Full Idea: Second-order variables can range over properties, sets, or relations on the items in the domain-of-discourse, or over functions from the domain itself.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
5. Theory of Logic / H. Proof Systems / 3. Proof from Assumptions
Supposing axioms (rather than accepting them) give truths, but they are conditional [Potter]
     Full Idea: A 'supposition' axiomatic theory is as concerned with truth as a 'realist' one (with undefined terms), but the truths are conditional. Satisfying the axioms is satisfying the theorem. This is if-thenism, or implicationism, or eliminative structuralism.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 01.1)
     A reaction: Aha! I had failed to make the connection between if-thenism and eliminative structuralism (of which I am rather fond). I think I am an if-thenist (not about all truth, but about provable truth).
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Downward Löwenheim-Skolem: if there's an infinite model, there is a countable model [Shapiro]
     Full Idea: Downward Löwenheim-Skolem: a finite or denumerable set of first-order formulas that is satisfied by a model whose domain is infinite is satisfied in a model whose domain is the natural numbers
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
Up Löwenheim-Skolem: if natural numbers satisfy wffs, then an infinite domain satisfies them [Shapiro]
     Full Idea: Upward Löwenheim-Skolem: if a set of first-order formulas is satisfied by a domain of at least the natural numbers, then it is satisfied by a model of at least some infinite cardinal.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
The Löwenheim-Skolem Theorems fail for second-order languages with standard semantics [Shapiro]
     Full Idea: Both of the Löwenheim-Skolem Theorems fail for second-order languages with a standard semantics
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.3.2)
The Löwenheim-Skolem theorem seems to be a defect of first-order logic [Shapiro]
     Full Idea: The Löwenheim-Skolem theorem is usually taken as a sort of defect (often thought to be inevitable) of the first-order logic.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
     A reaction: [He is quoting Wang 1974 p.154]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
If set theory didn't found mathematics, it is still needed to count infinite sets [Potter]
     Full Idea: Even if set theory's role as a foundation for mathematics turned out to be wholly illusory, it would earn its keep through the calculus it provides for counting infinite sets.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 03.8)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
It is remarkable that all natural number arithmetic derives from just the Peano Axioms [Potter]
     Full Idea: It is a remarkable fact that all the arithmetical properties of the natural numbers can be derived from such a small number of assumptions (as the Peano Axioms).
     From: Michael Potter (Set Theory and Its Philosophy [2004], 05.2)
     A reaction: If one were to defend essentialism about arithmetic, this would be grist to their mill. I'm just saying.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Second-order logic has the expressive power for mathematics, but an unworkable model theory [Shapiro]
     Full Idea: Full second-order logic has all the expressive power needed to do mathematics, but has an unworkable model theory.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
     A reaction: [he credits Cowles for this remark] Having an unworkable model theory sounds pretty serious to me, as I'm not inclined to be interested in languages which don't produce models of some sort. Surely models are the whole point?
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
A natural number is a property of sets [Maddy, by Oliver]
     Full Idea: Maddy takes a natural number to be a certain property of sui generis sets, the property of having a certain number of members.
     From: report of Penelope Maddy (Realism in Mathematics [1990], 3 §2) by Alex Oliver - The Metaphysics of Properties
     A reaction: [I believe Maddy has shifted since then] Presumably this will make room for zero and infinities as natural numbers. Personally I want my natural numbers to count things.
6. Mathematics / C. Sources of Mathematics / 2. Intuition of Mathematics
Intuition doesn't support much mathematics, and we should question its reliability [Maddy, by Shapiro]
     Full Idea: Maddy says that intuition alone does not support very much mathematics; more importantly, a naturalist cannot accept intuition at face value, but must ask why we are justified in relying on intuition.
     From: report of Penelope Maddy (Realism in Mathematics [1990]) by Stewart Shapiro - Thinking About Mathematics 8.3
     A reaction: It depends what you mean by 'intuition', but I identify with her second objection, that every faculty must ultimately be subject to criticism, which seems to point to a fairly rationalist view of things.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
We know mind-independent mathematical truths through sets, which rest on experience [Maddy, by Jenkins]
     Full Idea: Maddy proposes that we can know (some) mind-independent mathematical truths through knowing about sets, and that we can obtain knowledge of sets through experience.
     From: report of Penelope Maddy (Realism in Mathematics [1990]) by Carrie Jenkins - Grounding Concepts 6.5
     A reaction: Maddy has since backed off from this, and now tries to merely defend 'objectivity' about sets (2011:114). My amateurish view is that she is overrating the importance of sets, which merely model mathematics. Look at category theory.
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
A relation is a set consisting entirely of ordered pairs [Potter]
     Full Idea: A set is called a 'relation' if every element of it is an ordered pair.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 04.7)
     A reaction: This is the modern extensional view of relations. For 'to the left of', you just list all the things that are to the left, with the things they are to the left of. But just listing the ordered pairs won't necessarily reveal how they are related.
8. Modes of Existence / B. Properties / 11. Properties as Sets
Logicians use 'property' and 'set' interchangeably, with little hanging on it [Shapiro]
     Full Idea: In studying second-order logic one can think of relations and functions as extensional or intensional, or one can leave it open. Little turns on this here, and so words like 'property', 'class', and 'set' are used interchangeably.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.2.1)
     A reaction: Important. Students of the metaphysics of properties, who arrive with limited experience of logic, are bewildered by this attitude. Note that the metaphysics is left wide open, so never let logicians hijack the metaphysical problem of properties.
9. Objects / B. Unity of Objects / 2. Substance / b. Need for substance
If dependence is well-founded, with no infinite backward chains, this implies substances [Potter]
     Full Idea: The argument that the relation of dependence is well-founded ...is a version of the classical arguments for substance. ..Any conceptual scheme which genuinely represents a world cannot contain infinite backward chains of meaning.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 03.3)
     A reaction: Thus the iterative conception of set may imply a notion of substance, and Barwise's radical attempt to ditch the Axiom of Foundation (Idea 13039) was a radical attempt to get rid of 'substances'. Potter cites Wittgenstein as a fan of substances here.
9. Objects / C. Structure of Objects / 8. Parts of Objects / b. Sums of parts
Collections have fixed members, but fusions can be carved in innumerable ways [Potter]
     Full Idea: A collection has a determinate number of members, whereas a fusion may be carved up into parts in various equally valid (although perhaps not equally interesting) ways.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 02.1)
     A reaction: This seems to sum up both the attraction and the weakness of mereology. If you doubt the natural identity of so-called 'objects', then maybe classical mereology is the way to go.
10. Modality / A. Necessity / 1. Types of Modality
Priority is a modality, arising from collections and members [Potter]
     Full Idea: We must conclude that priority is a modality distinct from that of time or necessity, a modality arising in some way out of the manner in which a collection is constituted from its members.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 03.3)
     A reaction: He is referring to the 'iterative' view of sets, and cites Aristotle 'Metaphysics' 1019a1-4 as background.