Combining Texts

All the ideas for 'Realism in Mathematics', 'Higher-Order Logic' and 'Three Grades of Modal Involvement'

unexpand these ideas     |    start again     |     specify just one area for these texts


21 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The axiom of choice is controversial, but it could be replaced [Shapiro]
     Full Idea: The axiom of choice has a troubled history, but is now standard in mathematics. It could be replaced with a principle of comprehension for functions), or one could omit the variables ranging over functions.
     From: Stewart Shapiro (Higher-Order Logic [2001], n 3)
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
Maddy replaces pure sets with just objects and perceived sets of objects [Maddy, by Shapiro]
     Full Idea: Maddy dispenses with pure sets, by sketching a strong set theory in which everything is either a physical object or a set of sets of ...physical objects. Eventually a physiological story of perception will extend to sets of physical objects.
     From: report of Penelope Maddy (Realism in Mathematics [1990]) by Stewart Shapiro - Thinking About Mathematics 8.3
     A reaction: This doesn't seem to find many supporters, but if we accept the perception of resemblances as innate (as in Hume and Quine), it is isn't adding much to see that we intrinsically see things in groups.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is Complete, and Compact, with the Löwenheim-Skolem Theorems [Shapiro]
     Full Idea: Early study of first-order logic revealed a number of important features. Gödel showed that there is a complete, sound and effective deductive system. It follows that it is Compact, and there are also the downward and upward Löwenheim-Skolem Theorems.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Some say that second-order logic is mathematics, not logic [Shapiro]
     Full Idea: Some authors argue that second-order logic (with standard semantics) is not logic at all, but is a rather obscure form of mathematics.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
If the aim of logic is to codify inferences, second-order logic is useless [Shapiro]
     Full Idea: If the goal of logical study is to present a canon of inference, a calculus which codifies correct inference patterns, then second-order logic is a non-starter.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
     A reaction: This seems to be because it is not 'complete'. However, moves like plural quantification seem aimed at capturing ordinary language inferences, so the difficulty is only that there isn't a precise 'calculus'.
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Logical consequence can be defined in terms of the logical terminology [Shapiro]
     Full Idea: Informally, logical consequence is sometimes defined in terms of the meanings of a certain collection of terms, the so-called 'logical terminology'.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
     A reaction: This seems to be a compositional account, where we build a full account from an account of the atomic bits, perhaps presented as truth-tables.
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
Whether a modal claim is true depends on how the object is described [Quine, by Fine,K]
     Full Idea: Quine says if ∃x□(x>7) makes sense, then for which object x is the condition rendered true? Specify it as '9' and it is apparently rendered true, specify it as 'the number of planets' and it is apparently rendered false.
     From: report of Willard Quine (Three Grades of Modal Involvement [1953]) by Kit Fine - Quine on Quantifying In p.105
     A reaction: This is normally characterised as Quine saying that only de dicto involvement is possible, and not de re involvement. Or that that all essences are nominal, and cannot be real.
5. Theory of Logic / G. Quantification / 1. Quantification
Objects are the values of variables, so a referentially opaque context cannot be quantified into [Quine]
     Full Idea: The objects of a theory are not properly describable as the things named by the singular terms; they are the values, rather, of the variables of quantification. ..So a referentially opaque context is one that cannot properly be quantified into.
     From: Willard Quine (Three Grades of Modal Involvement [1953], p.174)
     A reaction: The point being that you cannot accurately pick out the objects in the domain
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Second-order variables also range over properties, sets, relations or functions [Shapiro]
     Full Idea: Second-order variables can range over properties, sets, or relations on the items in the domain-of-discourse, or over functions from the domain itself.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Up Löwenheim-Skolem: if natural numbers satisfy wffs, then an infinite domain satisfies them [Shapiro]
     Full Idea: Upward Löwenheim-Skolem: if a set of first-order formulas is satisfied by a domain of at least the natural numbers, then it is satisfied by a model of at least some infinite cardinal.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
The Löwenheim-Skolem Theorems fail for second-order languages with standard semantics [Shapiro]
     Full Idea: Both of the Löwenheim-Skolem Theorems fail for second-order languages with a standard semantics
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.3.2)
The Löwenheim-Skolem theorem seems to be a defect of first-order logic [Shapiro]
     Full Idea: The Löwenheim-Skolem theorem is usually taken as a sort of defect (often thought to be inevitable) of the first-order logic.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
     A reaction: [He is quoting Wang 1974 p.154]
Downward Löwenheim-Skolem: if there's an infinite model, there is a countable model [Shapiro]
     Full Idea: Downward Löwenheim-Skolem: a finite or denumerable set of first-order formulas that is satisfied by a model whose domain is infinite is satisfied in a model whose domain is the natural numbers
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Second-order logic has the expressive power for mathematics, but an unworkable model theory [Shapiro]
     Full Idea: Full second-order logic has all the expressive power needed to do mathematics, but has an unworkable model theory.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
     A reaction: [he credits Cowles for this remark] Having an unworkable model theory sounds pretty serious to me, as I'm not inclined to be interested in languages which don't produce models of some sort. Surely models are the whole point?
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
A natural number is a property of sets [Maddy, by Oliver]
     Full Idea: Maddy takes a natural number to be a certain property of sui generis sets, the property of having a certain number of members.
     From: report of Penelope Maddy (Realism in Mathematics [1990], 3 §2) by Alex Oliver - The Metaphysics of Properties
     A reaction: [I believe Maddy has shifted since then] Presumably this will make room for zero and infinities as natural numbers. Personally I want my natural numbers to count things.
6. Mathematics / C. Sources of Mathematics / 2. Intuition of Mathematics
Intuition doesn't support much mathematics, and we should question its reliability [Maddy, by Shapiro]
     Full Idea: Maddy says that intuition alone does not support very much mathematics; more importantly, a naturalist cannot accept intuition at face value, but must ask why we are justified in relying on intuition.
     From: report of Penelope Maddy (Realism in Mathematics [1990]) by Stewart Shapiro - Thinking About Mathematics 8.3
     A reaction: It depends what you mean by 'intuition', but I identify with her second objection, that every faculty must ultimately be subject to criticism, which seems to point to a fairly rationalist view of things.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
We know mind-independent mathematical truths through sets, which rest on experience [Maddy, by Jenkins]
     Full Idea: Maddy proposes that we can know (some) mind-independent mathematical truths through knowing about sets, and that we can obtain knowledge of sets through experience.
     From: report of Penelope Maddy (Realism in Mathematics [1990]) by Carrie Jenkins - Grounding Concepts 6.5
     A reaction: Maddy has since backed off from this, and now tries to merely defend 'objectivity' about sets (2011:114). My amateurish view is that she is overrating the importance of sets, which merely model mathematics. Look at category theory.
8. Modes of Existence / B. Properties / 11. Properties as Sets
Logicians use 'property' and 'set' interchangeably, with little hanging on it [Shapiro]
     Full Idea: In studying second-order logic one can think of relations and functions as extensional or intensional, or one can leave it open. Little turns on this here, and so words like 'property', 'class', and 'set' are used interchangeably.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.2.1)
     A reaction: Important. Students of the metaphysics of properties, who arrive with limited experience of logic, are bewildered by this attitude. Note that the metaphysics is left wide open, so never let logicians hijack the metaphysical problem of properties.
9. Objects / D. Essence of Objects / 9. Essence and Properties
Aristotelian essentialism says a thing has some necessary and some non-necessary properties [Quine]
     Full Idea: What Aristotelian essentialism says is that you can have open sentences Fx and Gx, such that ∃x(nec Fx.Gx.¬nec Gx). For example, ∃x(nec(x>5). there are just x planets. ¬nec(there are just x planets)).
     From: Willard Quine (Three Grades of Modal Involvement [1953], p.176)
     A reaction: This is a denial of 'maximal essentialism', that all of a things properties might be essential. Quine is thus denying necessity, except under a description. He may be equivocating over the reference of 'there are just 9 planets'.
10. Modality / A. Necessity / 2. Nature of Necessity
Necessity can attach to statement-names, to statements, and to open sentences [Quine]
     Full Idea: Three degrees necessity in logic or semantics: first and least is attaching a semantical predicate to the names of statements (as Nec '9>5'); second and more drastic attaches to statements themselves; third and gravest attaches to open sentences.
     From: Willard Quine (Three Grades of Modal Involvement [1953], p.158)
10. Modality / A. Necessity / 11. Denial of Necessity
Necessity is in the way in which we say things, and not things themselves [Quine]
     Full Idea: Necessity resides in the way in which we say things, and not in the things we talk about.
     From: Willard Quine (Three Grades of Modal Involvement [1953], p.176)
     A reaction: This is a culminating idea of Quine's thoroughgoing empiricism, as filtered through logical positivism. I would hardly dare to accuse Quine of a use/mention confusion (his own bête noir), but one seems to me to be lurking here.