Combining Texts

All the ideas for 'Defending the Axioms', 'On the Very Idea of a Third Dogma' and 'A New Kind of Science'

unexpand these ideas     |    start again     |     specify just one area for these texts


10 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice paradoxically allows decomposing a sphere into two identical spheres [Maddy]
     Full Idea: One feature of the Axiom of Choice that troubled many mathematicians was the so-called Banach-Tarski paradox: using the Axiom, a sphere can be decomposed into finitely many parts and those parts reassembled into two spheres the same size as the original.
     From: Penelope Maddy (Defending the Axioms [2011], 1.3)
     A reaction: (The key is that the parts are non-measurable). To an outsider it is puzzling that the Axiom has been universally accepted, even though it produces such a result. Someone can explain that, I'm sure.
5. Theory of Logic / C. Ontology of Logic / 3. If-Thenism
Critics of if-thenism say that not all starting points, even consistent ones, are worth studying [Maddy]
     Full Idea: If-thenism denies that mathematics is in the business of discovering truths about abstracta. ...[their opponents] obviously don't regard any starting point, even a consistent one, as equally worthy of investigation.
     From: Penelope Maddy (Defending the Axioms [2011], 3.3)
     A reaction: I have some sympathy with if-thenism, in that you can obviously study the implications of any 'if' you like, but deep down I agree with the critics.
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Hilbert's geometry and Dedekind's real numbers were role models for axiomatization [Maddy]
     Full Idea: At the end of the nineteenth century there was a renewed emphasis on rigor, the central tool of which was axiomatization, along the lines of Hilbert's axioms for geometry and Dedekind's axioms for real numbers.
     From: Penelope Maddy (Defending the Axioms [2011], 1.3)
If two mathematical themes coincide, that suggest a single deep truth [Maddy]
     Full Idea: The fact that two apparently fruitful mathematical themes turn out to coincide makes it all the more likely that they're tracking a genuine strain of mathematical depth.
     From: Penelope Maddy (Defending the Axioms [2011], 5.3ii)
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
At one level maths and nature are very similar, suggesting some deeper origin [Wolfram]
     Full Idea: At some rather abstract level one can immediately recognise one basic similarity between nature and mathematics ...this suggests that the overall similarity between mathematics and nature must have a deeper origin.
     From: Stephen Wolfram (A New Kind of Science [2002], p.772), quoted by Peter Watson - Convergence 17 'Philosophy'
     A reaction: Personally I think mathematics has been derived by abstracting from the patterns in nature, and then further extrapolating from those abstractions. So the puzzle in nature is not the correspondence with mathematics, but the patterns.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
Every infinite set of reals is either countable or of the same size as the full set of reals [Maddy]
     Full Idea: One form of the Continuum Hypothesis is the claim that every infinite set of reals is either countable or of the same size as the full set of reals.
     From: Penelope Maddy (Defending the Axioms [2011], 2.4 n40)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set-theory tracks the contours of mathematical depth and fruitfulness [Maddy]
     Full Idea: Our set-theoretic methods track the underlying contours of mathematical depth. ...What sets are, most fundamentally, is markers for these contours ...they are maximally effective trackers of certain trains of mathematical fruitfulness.
     From: Penelope Maddy (Defending the Axioms [2011], 3.4)
     A reaction: This seems to make it more like a map of mathematics than the actual essence of mathematics.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
The connection of arithmetic to perception has been idealised away in modern infinitary mathematics [Maddy]
     Full Idea: Ordinary perceptual cognition is most likely involved in our grasp of elementary arithmetic, but ...this connection to the physical world has long since been idealized away in the infinitary structures of contemporary pure mathematics.
     From: Penelope Maddy (Defending the Axioms [2011], 2.3)
     A reaction: Despite this, Maddy's quest is for a 'naturalistic' account of mathematics. She ends up defending 'objectivity' (and invoking Tyler Burge), rather than even modest realism. You can't 'idealise away' the counting of objects. I blame Cantor.
19. Language / F. Communication / 6. Interpreting Language / a. Translation
Translation is too flimsy a notion to support theories of cultural incommensurability [Quine]
     Full Idea: Translation is a flimsy notion, unfit to bear the weight of the theories of cultural incommensurability that Davidson effectively and justly criticises.
     From: Willard Quine (On the Very Idea of a Third Dogma [1981], p.42)
     A reaction: I presume he means that a claim to accurately translate something is false, because there is no clear idea of what a good translation looks like it. I just don't believe him. The practice of daily life belies Quine's theories on this.
27. Natural Reality / C. Space / 4. Substantival Space
Space and its contents seem to be one stuff - so space is the only existing thing [Wolfram]
     Full Idea: It seems plausible that both space and its contents should somehow be made of the same stuff - so that in a sense space becomes the only thing in the universe.
     From: Stephen Wolfram (A New Kind of Science [2002], p.474), quoted by Peter Watson - Convergence 17 'Philosophy'
     A reaction: I presume the concept of a 'field' is what makes this idea possible.