Combining Texts

All the ideas for 'General Facts,Phys Necessity, and Metaph of Time', 'The Roots of Romanticism' and 'Intro to Non-Classical Logic (1st ed)'

unexpand these ideas     |    start again     |     specify just one area for these texts


34 ideas

1. Philosophy / B. History of Ideas / 5. Later European Thought
Romanticism is the greatest change in the consciousness of the West [Berlin]
     Full Idea: Romanticism seems to me the greatest single shift in the consciousness of the West that has occurred.
     From: Isaiah Berlin (The Roots of Romanticism [1965], Ch.1)
     A reaction: Far be it from me to challenge Berlin on such things, but I think that the scientific revolution of the seventeenth century (though acting more slowly and less dramatically than romanticism) may well be more significant in the long run. Ideas filter down.
3. Truth / B. Truthmakers / 3. Truthmaker Maximalism
The truth-maker principle is that every truth has a sufficient truth-maker [Forrest]
     Full Idea: Item x is said to be a sufficient truth-maker for truth-bearer p just in case necessarily if x exists then p is true. ...Every truth has a sufficient truth-maker. Hence, I take it, the sum of all sufficient truth-makers is a universal truth-maker.
     From: Peter Forrest (General Facts,Phys Necessity, and Metaph of Time [2006], 1)
     A reaction: Note that it is not 'necessary', because something else might make p true instead.
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
Free logic is one of the few first-order non-classical logics [Priest,G]
     Full Idea: Free logic is an unusual example of a non-classical logic which is first-order.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], Pref)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
X1 x X2 x X3... x Xn indicates the 'cartesian product' of those sets [Priest,G]
     Full Idea: X1 x X2 x X3... x Xn indicates the 'cartesian product' of those sets, the set of all the n-tuples with its first member in X1, its second in X2, and so on.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.0)
<a,b&62; is a set whose members occur in the order shown [Priest,G]
     Full Idea: <a,b> is a set whose members occur in the order shown; <x1,x2,x3, ..xn> is an 'n-tuple' ordered set.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.10)
a ∈ X says a is an object in set X; a ∉ X says a is not in X [Priest,G]
     Full Idea: a ∈ X means that a is a member of the set X, that is, a is one of the objects in X. a ∉ X indicates that a is not in X.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
{x; A(x)} is a set of objects satisfying the condition A(x) [Priest,G]
     Full Idea: {x; A(x)} indicates a set of objects which satisfy the condition A(x).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
{a1, a2, ...an} indicates that a set comprising just those objects [Priest,G]
     Full Idea: {a1, a2, ...an} indicates that the set comprises of just those objects.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
Φ indicates the empty set, which has no members [Priest,G]
     Full Idea: Φ indicates the empty set, which has no members
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
{a} is the 'singleton' set of a (not the object a itself) [Priest,G]
     Full Idea: {a} is the 'singleton' set of a, not to be confused with the object a itself.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
X⊂Y means set X is a 'proper subset' of set Y [Priest,G]
     Full Idea: X⊂Y means set X is a 'proper subset' of set Y (if and only if all of its members are members of Y, but some things in Y are not in X)
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
X⊆Y means set X is a 'subset' of set Y [Priest,G]
     Full Idea: X⊆Y means set X is a 'subset' of set Y (if and only if all of its members are members of Y).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
X = Y means the set X equals the set Y [Priest,G]
     Full Idea: X = Y means the set X equals the set Y, which means they have the same members (i.e. X⊆Y and Y⊆X).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
X ∩ Y indicates the 'intersection' of sets X and Y, the objects which are in both sets [Priest,G]
     Full Idea: X ∩ Y indicates the 'intersection' of sets X and Y, which is a set containing just those things that are in both X and Y.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
X∪Y indicates the 'union' of all the things in sets X and Y [Priest,G]
     Full Idea: X ∪ Y indicates the 'union' of sets X and Y, which is a set containing just those things that are in X or Y (or both).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
Y - X is the 'relative complement' of X with respect to Y; the things in Y that are not in X [Priest,G]
     Full Idea: Y - X indicates the 'relative complement' of X with respect to Y, that is, all the things in Y that are not in X.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'relative complement' is things in the second set not in the first [Priest,G]
     Full Idea: The 'relative complement' of one set with respect to another is the things in the second set that aren't in the first.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'intersection' of two sets is a set of the things that are in both sets [Priest,G]
     Full Idea: The 'intersection' of two sets is a set containing the things that are in both sets.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'union' of two sets is a set containing all the things in either of the sets [Priest,G]
     Full Idea: The 'union' of two sets is a set containing all the things in either of the sets
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'induction clause' says complex formulas retain the properties of their basic formulas [Priest,G]
     Full Idea: The 'induction clause' says that whenever one constructs more complex formulas out of formulas that have the property P, the resulting formulas will also have that property.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.2)
A 'singleton' is a set with only one member [Priest,G]
     Full Idea: A 'singleton' is a set with only one member.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
A 'member' of a set is one of the objects in the set [Priest,G]
     Full Idea: A 'member' of a set is one of the objects in the set.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
An 'ordered pair' (or ordered n-tuple) is a set with its members in a particular order [Priest,G]
     Full Idea: An 'ordered pair' (or ordered n-tuple) is a set with its members in a particular order.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.10)
A 'cartesian product' of sets is the set of all the n-tuples with one member in each of the sets [Priest,G]
     Full Idea: A 'cartesian product' of sets is the set of all the n-tuples with one member in each of the sets.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.10)
A 'set' is a collection of objects [Priest,G]
     Full Idea: A 'set' is a collection of objects.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
The 'empty set' or 'null set' has no members [Priest,G]
     Full Idea: The 'empty set' or 'null set' is a set with no members.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
A set is a 'subset' of another set if all of its members are in that set [Priest,G]
     Full Idea: A set is a 'subset' of another set if all of its members are in that set.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
A 'proper subset' is smaller than the containing set [Priest,G]
     Full Idea: A set is a 'proper subset' of another set if some things in the large set are not in the smaller set
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
The empty set Φ is a subset of every set (including itself) [Priest,G]
     Full Idea: The empty set Φ is a subset of every set (including itself).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
20. Action / C. Motives for Action / 3. Acting on Reason / b. Intellectualism
Most Enlightenment thinkers believed that virtue consists ultimately in knowledge [Berlin]
     Full Idea: What is common to most of the main thinker of the Enlightenment is the view that virtue consists ultimately in knowledge.
     From: Isaiah Berlin (The Roots of Romanticism [1965], Ch.2)
     A reaction: I have always found this view (which seems to originate with Socrates) rather sympathetic. What is so frustrating about cheerful optimists who smoke cigarettes is not the weakness of will or strong desires, but their apparent failure of understanding.
23. Ethics / C. Virtue Theory / 3. Virtues / a. Virtues
If we are essentially free wills, authenticity and sincerity are the highest virtues [Berlin]
     Full Idea: Since (for romantics) we are wills, and we must be free, in the Kantian sense, controllable motives count more than consequences, and the greatest virtue of all is what existentialists call 'authenticity' and what romantics called 'sincerity'.
     From: Isaiah Berlin (The Roots of Romanticism [1965], Ch.6)
     A reaction: The case of the sincere or authentic Nazi shows the problems with this. However, I agree that sincerity is a key virtue, perhaps the crucial preliminary to all the other virtues. It is hard to imagine a flow of other virtues from an insincere person.
23. Ethics / D. Deontological Ethics / 2. Duty
The Greeks have no notion of obligation or duty [Berlin]
     Full Idea: There is an absence among the Greeks of a notion of obligation, and hence of duty, which is difficult to grasp for people who read the Greeks through spectacles partly affected by the jews.
     From: Isaiah Berlin (The Roots of Romanticism [1965], Ch.1)
     A reaction: This doesn't quite fit early section of 'Republic', in which morality is a mutual agreement not to do harm. Presumably the Greek word 'deon' refers to what needs to be done, rather than to anyone's obligation to do it(?). Contracts need duty? Cf. 4133
23. Ethics / F. Existentialism / 1. Existentialism
Central to existentialism is the romantic idea that there is nothing to lean on [Berlin]
     Full Idea: The central sermon of existentialism is essentially a romantic one, namely, that there is in the world nothing to lean on.
     From: Isaiah Berlin (The Roots of Romanticism [1965], Ch.6)
     A reaction: He tracks this back to Kant's view that our knowledge of the world arises out of our own minds. So what is there to lean on? Rational consistency? Natural human excellence? God? Pleasure? Anonymous duty? I like the second one.
29. Religion / B. Monotheistic Religion / 2. Judaism
Judaism and Christianity views are based on paternal, family and tribal relations [Berlin]
     Full Idea: The notion from which both Judaism and Christianity to a large degree sprang is the notion of family life, the relations of father and son, perhaps the relations of members of a tribe to one another.
     From: Isaiah Berlin (The Roots of Romanticism [1965], Ch.1)
     A reaction: He compares this with Plato's mathematical view of reality. Key stories would be Abraham and Isaac, and Jesus being the 'son' of God, which both touch the killing of the child. Berlin means that the universe is explained this way.