Combining Texts

All the ideas for 'Good and Evil', 'Intro to Non-Classical Logic (1st ed)' and 'Mathematics is Megethology'

unexpand these ideas     |    start again     |     specify just one area for these texts


39 ideas

4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
Free logic is one of the few first-order non-classical logics [Priest,G]
     Full Idea: Free logic is an unusual example of a non-classical logic which is first-order.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], Pref)
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematics reduces to set theory, which reduces, with some mereology, to the singleton function [Lewis]
     Full Idea: It is generally accepted that mathematics reduces to set theory, and I argue that set theory in turn reduces, with some aid of mereology, to the theory of the singleton function.
     From: David Lewis (Mathematics is Megethology [1993], p.03)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
X1 x X2 x X3... x Xn indicates the 'cartesian product' of those sets [Priest,G]
     Full Idea: X1 x X2 x X3... x Xn indicates the 'cartesian product' of those sets, the set of all the n-tuples with its first member in X1, its second in X2, and so on.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.0)
<a,b&62; is a set whose members occur in the order shown [Priest,G]
     Full Idea: <a,b> is a set whose members occur in the order shown; <x1,x2,x3, ..xn> is an 'n-tuple' ordered set.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.10)
a ∈ X says a is an object in set X; a ∉ X says a is not in X [Priest,G]
     Full Idea: a ∈ X means that a is a member of the set X, that is, a is one of the objects in X. a ∉ X indicates that a is not in X.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
{x; A(x)} is a set of objects satisfying the condition A(x) [Priest,G]
     Full Idea: {x; A(x)} indicates a set of objects which satisfy the condition A(x).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
{a1, a2, ...an} indicates that a set comprising just those objects [Priest,G]
     Full Idea: {a1, a2, ...an} indicates that the set comprises of just those objects.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
Φ indicates the empty set, which has no members [Priest,G]
     Full Idea: Φ indicates the empty set, which has no members
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
{a} is the 'singleton' set of a (not the object a itself) [Priest,G]
     Full Idea: {a} is the 'singleton' set of a, not to be confused with the object a itself.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
X⊂Y means set X is a 'proper subset' of set Y [Priest,G]
     Full Idea: X⊂Y means set X is a 'proper subset' of set Y (if and only if all of its members are members of Y, but some things in Y are not in X)
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
X⊆Y means set X is a 'subset' of set Y [Priest,G]
     Full Idea: X⊆Y means set X is a 'subset' of set Y (if and only if all of its members are members of Y).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
X = Y means the set X equals the set Y [Priest,G]
     Full Idea: X = Y means the set X equals the set Y, which means they have the same members (i.e. X⊆Y and Y⊆X).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
X ∩ Y indicates the 'intersection' of sets X and Y, the objects which are in both sets [Priest,G]
     Full Idea: X ∩ Y indicates the 'intersection' of sets X and Y, which is a set containing just those things that are in both X and Y.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
X∪Y indicates the 'union' of all the things in sets X and Y [Priest,G]
     Full Idea: X ∪ Y indicates the 'union' of sets X and Y, which is a set containing just those things that are in X or Y (or both).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
Y - X is the 'relative complement' of X with respect to Y; the things in Y that are not in X [Priest,G]
     Full Idea: Y - X indicates the 'relative complement' of X with respect to Y, that is, all the things in Y that are not in X.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'relative complement' is things in the second set not in the first [Priest,G]
     Full Idea: The 'relative complement' of one set with respect to another is the things in the second set that aren't in the first.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'intersection' of two sets is a set of the things that are in both sets [Priest,G]
     Full Idea: The 'intersection' of two sets is a set containing the things that are in both sets.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'union' of two sets is a set containing all the things in either of the sets [Priest,G]
     Full Idea: The 'union' of two sets is a set containing all the things in either of the sets
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'induction clause' says complex formulas retain the properties of their basic formulas [Priest,G]
     Full Idea: The 'induction clause' says that whenever one constructs more complex formulas out of formulas that have the property P, the resulting formulas will also have that property.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.2)
A 'singleton' is a set with only one member [Priest,G]
     Full Idea: A 'singleton' is a set with only one member.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
A 'member' of a set is one of the objects in the set [Priest,G]
     Full Idea: A 'member' of a set is one of the objects in the set.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
An 'ordered pair' (or ordered n-tuple) is a set with its members in a particular order [Priest,G]
     Full Idea: An 'ordered pair' (or ordered n-tuple) is a set with its members in a particular order.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.10)
A 'cartesian product' of sets is the set of all the n-tuples with one member in each of the sets [Priest,G]
     Full Idea: A 'cartesian product' of sets is the set of all the n-tuples with one member in each of the sets.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.10)
A 'set' is a collection of objects [Priest,G]
     Full Idea: A 'set' is a collection of objects.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
The 'empty set' or 'null set' has no members [Priest,G]
     Full Idea: The 'empty set' or 'null set' is a set with no members.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
A set is a 'subset' of another set if all of its members are in that set [Priest,G]
     Full Idea: A set is a 'subset' of another set if all of its members are in that set.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
A 'proper subset' is smaller than the containing set [Priest,G]
     Full Idea: A set is a 'proper subset' of another set if some things in the large set are not in the smaller set
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
The empty set Φ is a subset of every set (including itself) [Priest,G]
     Full Idea: The empty set Φ is a subset of every set (including itself).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
We can accept the null set, but not a null class, a class lacking members [Lewis]
     Full Idea: In my usage of 'class', there is no such things as the null class. I don't mind calling some memberless thing - some individual - the null set. But that doesn't make it a memberless class. Rather, that makes it a 'set' that is not a class.
     From: David Lewis (Mathematics is Megethology [1993], p.05)
     A reaction: Lewis calls this usage 'idiosyncratic', but it strikes me as excellent. Set theorists can have their vital null class, and sensible people can be left to say, with Lewis, that classes of things must have members.
The null set plays the role of last resort, for class abstracts and for existence [Lewis]
     Full Idea: The null set serves two useful purposes. It is a denotation of last resort for class abstracts that denote no nonempty class. And it is an individual of last resort: we can count on its existence, and fearlessly build the hierarchy of sets from it.
     From: David Lewis (Mathematics is Megethology [1993], p.09)
     A reaction: This passage assuages my major reservation about the existence of the null set, but at the expense of confirming that it must be taken as an entirely fictional entity.
The null set is not a little speck of sheer nothingness, a black hole in Reality [Lewis]
     Full Idea: Should we accept the null set as a most extraordinary individual, a little speck of sheer nothingness, a sort of black hole in the fabric of Reality itself? Not that either, I think.
     From: David Lewis (Mathematics is Megethology [1993], p.09)
     A reaction: Correct!
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
What on earth is the relationship between a singleton and an element? [Lewis]
     Full Idea: A new student of set theory has just one thing, the element, and he has another single thing, the singleton, and not the slightest guidance about what one thing has to do with the other.
     From: David Lewis (Mathematics is Megethology [1993], p.12)
Are all singletons exact intrinsic duplicates? [Lewis]
     Full Idea: Are all singletons exact intrinsic duplicates?
     From: David Lewis (Mathematics is Megethology [1993], p.13)
4. Formal Logic / G. Formal Mereology / 1. Mereology
Megethology is the result of adding plural quantification to mereology [Lewis]
     Full Idea: Megethology is the result of adding plural quantification, as advocated by George Boolos, to the language of mereology.
     From: David Lewis (Mathematics is Megethology [1993], p.03)
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
We can use mereology to simulate quantification over relations [Lewis]
     Full Idea: We can simulate quantification over relations using megethology. Roughly, a quantifier over relations is a plural quantifier over things that encode ordered pairs by mereological means.
     From: David Lewis (Mathematics is Megethology [1993], p.18)
     A reaction: [He credits this idea to Burgess and Haven] The point is to avoid second-order logic, which quantifies over relations as ordered n-tuple sets.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Mathematics is generalisations about singleton functions [Lewis]
     Full Idea: We can take the theory of singleton functions, and hence set theory, and hence mathematics, to consist of generalisations about all singleton functions.
     From: David Lewis (Mathematics is Megethology [1993], p.03)
     A reaction: At first glance this sounds like a fancy version of the somewhat discredited Greek idea that mathematics is built on the concept of a 'unit'.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
We don't need 'abstract structures' to have structural truths about successor functions [Lewis]
     Full Idea: We needn't believe in 'abstract structures' to have general structural truths about all successor functions.
     From: David Lewis (Mathematics is Megethology [1993], p.16)
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
I say that absolutely any things can have a mereological fusion [Lewis]
     Full Idea: I accept the principle of Unrestricted Composition: whenever there are some things, no matter how many or how unrelated or how disparate in character they may be, they have a mereological fusion. ...The trout-turkey is part fish and part fowl.
     From: David Lewis (Mathematics is Megethology [1993], p.07)
     A reaction: This nicely ducks the question of when things form natural wholes and when they don't, but I would have thought that that might be one of the central issues of metaphysicals, so I think I'll give Lewis's principle a miss.
22. Metaethics / C. The Good / 1. Goodness / a. Form of the Good
'Good' is an attributive adjective like 'large', not predicative like 'red' [Geach, by Foot]
     Full Idea: Geach puts 'good' in the class of attributive adjectives, such as 'large' and 'small', contrasting such adjectives with 'predicative' adjectives such as 'red'.
     From: report of Peter Geach (Good and Evil [1956]) by Philippa Foot - Natural Goodness Intro
     A reaction: [In Analysis 17, and 'Theories of Ethics' ed Foot] Thus any object can simply be red, but something can only be large or small 'for a rat' or 'for a car'. Hence nothing is just good, but always a good so-and-so. This is Aristotelian, and Foot loves it.