Combining Texts

All the ideas for 'On the Question of Absolute Undecidability', 'The Eumenides' and 'Particulars in Particular Clothing'

unexpand these ideas     |    start again     |     specify just one area for these texts


8 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Mathematical set theory has many plausible stopping points, such as finitism, and predicativism [Koellner]
     Full Idea: There are many coherent stopping points in the hierarchy of increasingly strong mathematical systems, starting with strict finitism, and moving up through predicativism to the higher reaches of set theory.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], Intro)
'Reflection principles' say the whole truth about sets can't be captured [Koellner]
     Full Idea: Roughly speaking, 'reflection principles' assert that anything true in V [the set hierarchy] falls short of characterising V in that it is true within some earlier level.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 2.1)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
We have no argument to show a statement is absolutely undecidable [Koellner]
     Full Idea: There is at present no solid argument to the effect that a given statement is absolutely undecidable.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 5.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
There are at least eleven types of large cardinal, of increasing logical strength [Koellner]
     Full Idea: Some of the standard large cardinals (in order of increasing (logical) strength) are: inaccessible, Mahlo, weakly compact, indescribable, Erdös, measurable, strong, Wodin, supercompact, huge etc. (...and ineffable).
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
     A reaction: [I don't understand how cardinals can have 'logical strength', but I pass it on anyway]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
PA is consistent as far as we can accept, and we expand axioms to overcome limitations [Koellner]
     Full Idea: To the extent that we are justified in accepting Peano Arithmetic we are justified in accepting its consistency, and so we know how to expand the axiom system so as to overcome the limitation [of Gödel's Second Theorem].
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.1)
     A reaction: Each expansion brings a limitation, but then you can expand again.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Arithmetical undecidability is always settled at the next stage up [Koellner]
     Full Idea: The arithmetical instances of undecidability that arise at one stage of the hierarchy are settled at the next.
     From: Peter Koellner (On the Question of Absolute Undecidability [2006], 1.4)
8. Modes of Existence / B. Properties / 13. Tropes / a. Nature of tropes
Internal relations combine some tropes into a nucleus, which bears the non-essential tropes [Simons, by Edwards]
     Full Idea: Simons's 'nuclear' option blends features of the substratum and bundle theories. First we have tropes collected by virtue of their internal relations, forming the essential kernel or nucleus. This nucleus then bears the non-essential tropes.
     From: report of Peter Simons (Particulars in Particular Clothing [1994], p.567) by Douglas Edwards - Properties 3.5
     A reaction: [compression of Edwards's summary] This strikes me as being a remarkably good theory. I am not sure of the ontological status of properties, such that they can (unaided) combine to make part of an object. What binds the non-essentials?
25. Social Practice / D. Justice / 2. The Law / b. Rule of law
The 'Eumenides' of Aeschylus shows blood feuds replaced by law [Aeschylus, by Grayling]
     Full Idea: The 'Eumenides' of Aeschylus tells how the old rule of revenge and blood feud was replaced by a due process of law before a civil jury.
     From: report of Aeschylus (The Eumenides [c.458 BCE]) by A.C. Grayling - What is Good? Ch.2
     A reaction: Compare Idea 1659, where this revolution is attributed to Protagoras (a little later than Aeschylus). I take the rule of law and of society to be above all the rule of reason, because the aim is calm objectivity instead of emotion.